Do you want to publish a course? Click here

IRC +10 216 in 3-D: morphology of a TP-AGB star envelope

59   0   0.0 ( 0 )
 Added by Michael Bremer
 Publication date 2017
  fields Physics
and research's language is English
 Authors M. Guelin




Ask ChatGPT about the research

During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: Their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry is the optimal investigative tool for this purpose. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported on IRAM 30-m telescope CO(2-1) line emission observations in that envelope (HPBW 11). We now report much higher angular resolution observations of CO(2-1), CO(1-0), CN(2-1) and C$_4$H(24-23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3, 1 and 0.3, respectively). Although the envelope appears more intricate at high resolution, its prevailing structure remains a pattern of thin, nearly concentric shells. Outside the small (r<0.3) dust formation zone, the gas appears to expand radially at a constant velocity, 14.5 km/s, with small turbulent motions. Based on that property, we have reconstructed the 3-D structure of the outer envelope and have derived the gas temperature and density radial profiles in the inner (r<25) envelope. The over-dense shells have spherical or slightly oblate shapes and typically extend over a few steradians, implying isotropic mass loss. The regular spacing of shells in the outer envelope supports the model of a binary star system with a period of 700 years and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the envelope suggests a more complex scenario for the last few thousand years.



rate research

Read More

We present radio and mm continuum observations of the Galactic center taken with the VLA and ALMA at 44 and 226 GHz, respectively. We detect radio and mm emission from IRS 3, lying ~4.5 NW of Sgr A*, with a spectrum that is consistent with the photospheric emission from an AGB star at the Galactic center. Millimeter images reveal that the envelope of IRS 3, the brightest and most extended 3.8$mu$m Galactic center stellar source, consists of two semi-circular dust shells facing the direction of Sgr A*. The outer circumstellar shell at the distance of 1.6$times10^4$ AU, appears to break up into fingers of dust directed toward Sgr A*. These features coincide with molecular CS (5-4) emission and a near-IR extinction cloud distributed between IRS 3 and Sgr A*. The NE-SW asymmetric shape of the IRS 3 shells seen at 3.8 micron and radio are interpreted as structures that are tidally distorted by Sgr A*. Using the kinematics of CS emission and the proper motion of IRS 3, the tidally distorted outflowing material from the envelope after 5000 years constrains the distance of IRS 3 to $sim$0.7 pc in front of or $sim$0.5 pc behind Sgr A*. This suggests that the mass loss by stars near Sgr A* can supply a reservoir of molecular material near Sgr A*. We also present dark features in radio continuum images coincident with the envelope of IRS 3. These dusty stars provide examples in which high resolution radio continuum images can identify dust enshrouded stellar sources embedded an ionized medium.
Silicon monoxide maser emission has been detected in the circumstellar envelopes of many evolved stars in various vibrationally-excited rotational transitions. It is considered a good tracer of the wind dynamics close to the photosphere of the star. We have investigated the polarization morphology in the circumstellar envelope of an AGB star, R Cas. We mapped the linear and circular polarization of SiO masers in the v=1, J=1-0 transition. The linear polarization is typically a few tens of percent while the circular polarization is a few percent. The fractional polarization tends to be higher for emission of lower total intensity. We found that, in some isolated features the fractional linear polarization appears to exceed 100%. We found the Faraday rotation is not negligible but is ~15 deg., which could produce small scale structure in polarized emission whilst total intensity is smoother and partly resolved out. The polarization angles vary considerably from feature to feature but there is a tendency to favour the directions parallel or perpendicular to the radial direction with respect to the star. In some features, the polarization angle abruptly flips 90 deg. We found that our data are in the regime where the model of Goldreich et al (1973) can be applied and the polarization angle flip is caused when the magnetic field is at close to 55 deg. to the line of sight. The polarization angle configuration is consistent with a radial magnetic field although other configurations are not excluded.
Observations of the $^{12}$CO(3-2) emission of the circumstellar envelope (CSE) of the variable star $pi^1$ Gru using the compact array (ACA) of the ALMA observatory have been recently made accessible to the public. An analysis of the morphology and kinematics of the CSE is presented with a result very similar to that obtained earlier for $^{12}$CO(2-1) emission by Chiu et al. (2006) using the Sub-Millimeter Array. A quantitative comparison is made using their flared disk model. A new model is presented that provides a significantly better description of the data, using radial winds and smooth evolutions of the radio emission and wind velocity from the stellar equator to the poles.
We used the Extended Submillimeter Array (eSMA) in its most extended configuration to investigate the innermost (within a radius of 290 R* from the star) circumstellar envelope (CSE) of IRC+10216. We imaged the CSE using HCN and other molecular lines with a beam size of 0.22 x 0.46, deeply into the very inner edge (15 R*) of the envelope where the expansion velocity is only 3 km/s. The excitation mechanism of hot HCN and KCl maser lines is discussed. HCN maser components are spatially resolved for the first time on an astronomical object. We identified two discrete regions in the envelope: a region with a radius of . 15 R*, where molecular species have just formed and the gas has begun to be accelerated (region I) and a shell region (region II) with a radius of 23 R* and a thickness of 15 R*, whose expansion velocity has reached up to 13 km/s, nearly the terminal velocity of 15 km/s. The Si$^{34}$S line detected in region I shows a large expansion velocity of 16 km/s due to strong wing components, indicating that the emission may arise from a shock region in the innermost envelope. In region II, the P.A. of the most copious mass loss direction was found to be 120 +/- 10 degrees, which may correspond to the equatorial direction of the star. Region II contains a torus-like feature. These two regions may have emerged due to significant differences in the size distributions of the dust particles in the two regions.
Understanding the formation of planetary nebulae remains elusive because in the preceding asymtotic giant branch (AGB) phase these stars are heavily enshrouded in an optically thick dusty envelope. To further understand the morphology of the circumstellar environments of AGB stars we observe the closest carbon-rich AGB star IRC+10216 in scattered light. When imaged in scattered light at optical wavelengths, IRC+10216 surprisingly shows a narrow equatorial density enhancement, in contrast to the large-scale spherical rings that have been imaged much further out. We use radiative transfer models to interpret this structure in terms of two models: firstly, an equatorial density enhancement, commonly observed in the more evolved post-AGB stars, and secondly, in terms of a dust rings model, where a local enhancement of mass-loss creates a spiral ring as the star rotates. We conclude that both models can be used to reproduce the dark lane in the scattered light images, which is caused by an equatorially density enhancement formed by dense dust rather than a bipolar outflow as previously thought. We are unable to place constraints on the formation of the equatorial density enhancement by a binary system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا