No Arabic abstract
We present a catalog of extended low-surface-brightness galaxies (LSBGs) identified in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ${sim}$200 deg$^2$ of the survey, we have uncovered 781 LSBGs, spanning red ($g-igeq0.64$) and blue ($g-i<0.64$) colors and a wide range of morphologies. Since we focus on extended galaxies ($r_mathrm{eff}=2.5$-$14^{primeprime}$), our sample is likely dominated by low-redshift objects. We define LSBGs to have mean surface brightnesses $bar{mu}_mathrm{eff}(g)>24.3$ mag arcsec$^{-2}$, which allows nucleated galaxies into our sample. As a result, the central surface brightness distribution spans a wide range of $mu_0(g)=18$-$27.4$ mag arcsec$^{-2}$, with 50% and 95% of galaxies fainter than 24.3 and 22 mag arcsec$^{-2}$, respectively. Furthermore, the surface brightness distribution is a strong function of color, with the red distribution being much broader and generally fainter than that of the blue LSBGs, and this trend shows a clear correlation with galaxy morphology. Red LSBGs typically have smooth light profiles that are well-characterized by single-component S{e}rsic functions. In contrast, blue LSBGs tend to have irregular morphologies and show evidence for ongoing star formation. We crossmatch our sample with existing optical, HI, and ultraviolet catalogs to gain insight into the physical nature of the LSBGs. We find that our sample is diverse, ranging from dwarf spheroidals and ultra-diffuse galaxies in nearby groups to gas-rich irregulars to giant LSB spirals, demonstrating the potential of the HSC-SSP to provide a truly unprecedented view of the LSBG population.
We increase the sample of ultra diffuse galaxies (UDGs) in lower density environments with characterized globular cluster (GC) populations using new Hubble Space Telescope observations of nine UDGs in group environments. While the bulk of our UDGs have GC abundances consistent with normal dwarf galaxies, two of these UDGs have excess GC populations. These two UDGs both have GC luminosity functions consistent with higher surface brightness galaxies and cluster UDGs. We then combine our nine objects with previous studies to create a catalog of UDGs with analyzed GC populations that spans a uniquely diverse range of environments. We use this catalog to examine broader trends in the GC populations of low stellar mass galaxies. The highest GC abundances are found in cluster UDGs, but whether cluster UDGs are actually more extreme requires study of many more UDGs in groups. We find a possible positive correlation between GC abundance and stellar mass, and between GC abundance and galaxy size at fixed stellar mass. However, we see no significant stellar-mass galaxy-size relation, over our limited stellar mass range. We consider possible origins of the correlation between GC abundance and galaxy size, including the possibility that these two galaxy properties are both dependent on the galaxy dark matter halo, or that they are related through baryonic processes like internal feedback.
We present a catalogue of low surface brightness (LSB) galaxies in the Coma cluster obtained from deep Subaru/Suprime-Cam V and R-band imaging data within a region of $sim$4 deg$^2$. We increase the number of LSB galaxies presented in Yagi et al. (2016) by a factor of $sim$3 and report the discovery of 29 new ultra-diffuse galaxies (UDGs). We compile the largest sample of ultra-diffuse galaxies with colours and structural parameters in the Coma cluster. While most UDGs lie along the red-sequence relation of the colour-magnitude diagram, $sim$5per cent are outside (bluer or redder) the red-sequence region of Coma cluster galaxies. Our analyses show that there is no special distinction in the basic photometric parameters between UDGs and other LSB galaxies. We investigate the clustercentric colour distribution and find a remarkable transition at a projected radius of $sim$0.6 Mpc. Within this cluster core region, LSB galaxies are, on average, redder than co-spatial higher surface brightness galaxies, highlighting how vulnerable LSB galaxies are to the physical processes at play in the dense central region of the cluster. The position of the transition radius agrees with expectations from recent cosmological simulation of massive galaxy clusters within which ancient infalls are predicted to dominate the LSB galaxy population.
We present an overview of a deep transient survey of the COSMOS field with the Subaru Hyper Suprime-Cam (HSC). The survey was performed for the 1.77 deg$^2$ ultra-deep layer and 5.78 deg$^2$ deep layer in the Subaru Strategic Program over 6- and 4-month periods from 2016 to 2017, respectively. The ultra-deep layer shows a median depth per epoch of 26.4, 26.3, 26.0, 25.6, and 24.6 mag in $g$, $r$, $i$, $z$, and $y$ bands, respectively; the deep layer is $sim0.6$ mag shallower. In total, 1,824 supernova candidates were identified. Based on light curve fitting and derived light curve shape parameter, we classified 433 objects as Type Ia supernovae (SNe); among these candidates, 129 objects have spectroscopic or COSMOS2015 photometric redshifts and 58 objects are located at $z > 1$. Our unique dataset doubles the number of Type Ia SNe at $z > 1$ and enables various time-domain analyses of Type II SNe, high redshift superluminous SNe, variable stars, and active galactic nuclei.
We study the faint stellar halo of isolated central galaxies, by stacking galaxy images in the HSC survey and accounting for the residual sky background sampled with random points. The surface brightness profiles in HSC $r$-band are measured for a wide range of galaxy stellar masses ($9.2<log_{10}M_ast/M_odot<11.4$) and out to 120 kpc. Failing to account for the stellar halo below the noise level of individual images will lead to underestimates of the total luminosity by $leq 15%$. Splitting galaxies according to the concentration parameter of their light distributions, we find that the surface brightness profiles of low concentration galaxies drop faster between 20 and 100 kpc than those of high concentration galaxies. Albeit the large galaxy-to-galaxy scatter, we find a strong self-similarity of the stellar halo profiles. They show unified forms once the projected distance is scaled by the halo virial radius. The colour of galaxies is redder in the centre and bluer outside, with high concentration galaxies having redder and more flattened colour profiles. There are indications of a colour minimum, beyond which the colour of the outer stellar halo turns red again. This colour minimum, however, is very sensitive to the completeness in masking satellite galaxies. We also examine the effect of the extended PSF in the measurement of the stellar halo, which is particularly important for low mass or low concentration galaxies. The PSF-corrected surface brightness profile can be measured down to $sim$31 $mathrm{mag}/mathrm{arcsec}^2$ at 3-$sigma$ significance. PSF also slightly flattens the measured colour profiles.
We exploit the exquisite, deep Hyper Suprime-Cam (HSC) imaging data to probe the Galactic halo out to 200 kpc. Using the ~100 square degree, multi-band photometry of the first HSC Wide survey data release, we identify blue horizontal branch (BHB) stars beyond 50 kpc in the halo. The presence of the Sagittarius (Sgr) stream in the HSC fields produces a notable excess of stars at the apocentre of the leading arm (~50-60 kpc). For fields excluding Sgr, the BHB counts are consistent with a continuation of a -4 power-law from the inner halo. However, we find that the majority of the non-Sgr BHB stars beyond 50 kpc reside in one 27 square degree HSC field called VVDS. Curiously, this field is located close to the Magellanic plane, and we hypothesize that the excess of stars between 50 and 200 kpc could be associated with distant Magellanic debris. Indeed, without the VVDS, there are very few BHBs in the remaining portions of the Galaxy probed by the HSC. Accordingly, this scarcity of tracers is consistent with a significant decline in stellar density beyond 50 kpc, with a power-law of -4 or steeper.