Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and entanglement, has emerged as a valuable resource upon which exotic modern technologies are founded. In general, the most prominent adversary of quantum coherence is noise arising from the interaction of the associated dynamical system with its environment. Under certain conditions, however, the existence of noise may drive quantum and classical systems to endure intriguing nontrivial effects. Along these lines, here we demonstrate, both theoretically and experimentally, that when two indistinguishable particles co-propagate through quantum networks affected by noise, the system always evolves into a steady state in which coherences between certain separable states perpetually prevail. Furthermore, we show that the same steady state with surviving quantum coherences is reached irrespectively of the configuration in which the particles are prepared.