No Arabic abstract
Next-to-leading order predictions matched to parton showers are compared with recent ATLAS data on inclusive photon production and CMS data on associated photon and jet production in pp and pPb collisions at different centre-of-mass energies of the LHC. We find good agreement and, as expected, considerably reduced scale uncertainties compared to previous theoretical calculations. Predictions are made for the ratio of inclusive photons over decay photons $R_gamma$, an important quantity to evaluate the significance of additional photon sources, e.g. thermal radiation from a Quark-Gluon-Plasma, and for distributions in the parton momentum fraction in lead ions $x_{rm Pb}^{rm obs}$, that could be determined by ALICE, ATLAS, CMS and LHCb in ongoing analyses of photon+jet production in pPb collisions at $sqrt{s_{NN}}=5.02$ TeV. These data should have an important impact on the determination of nuclear effects such as shadowing at low $x$.
We present a calculation of direct photon production at next-to-leading order of QCD and a matching of this calculation with parton showers using POWHEG BOX. Based on simulations with POWHEG+PYTHIA, we perform a detailed phenomenological analysis of PHENIX data on prompt photon production and photon-hadron jet correlations in pp collisions at RHIC, considerably improving the description of these data with respect to previous calculations, and we suggest additional interesting analyses.
Within the resolved Pomeron model of hard diffractive scattering, we compute prompt photon production in double-Pomeron-exchange events in proton-proton collisions. Using specific kinematical constraints chosen according to the acceptances of the forward proton detectors of experiments at the Large Hadron Collider, we provide estimates for inclusive and isolated photon production. This is done using the JetPhox program. We find that next-to-leading order corrections to the hard process are important and must be included in order to correctly constrain the quark and gluon content of the Pomeron from such processes at the LHC.
In this paper we investigate the $eta_c$ production by photon - photon and photon - hadron interactions in $pp$ and $pA$ collisions at the LHC energies. The inclusive and diffractive contributions for the $eta_c$ photoproduction are estimated using the nonrelativistic quantum chromodynamics (NRQCD) formalism. We estimate the rapidity and transverse momentum distributions for the $eta_c$ photoproduction in hadronic collisions at the LHC and present our estimate for the total cross sections at the Run 2 energies. A comparison with the predictions for the exclusive $eta_c$ photoproduction, which is a direct probe of the Odderon, also is presented.
Direct photon spectra and elliptic flow v2 in heavy-ion collisions at RHIC and LHC energies are investigated within a relativistic transport approach incorporating both hadronic and partonic phases - the Parton-Hadron-String Dynamics (PHSD). The results suggest that a large v2 of the direct photons - as observed by the PHENIX Collaboration - signals a significant contribution of photons produced in interactions of secondary mesons and baryons in the late stages of the collision. In order to further differentiate the origin of the direct photon azimuthal asymmetry, we compare our predictions for the centrality dependence of the direct photon yield to the recent measurements by the PHENIX Collaboration and provide predictions for Pb+Pb collisions at LHC energies with respect to the direct photon spectra and v2(pT) for 0-40% centrality.
We analyse in detail the role of additional hadron-hadron interactions in elastic photon-initiated (PI) production at the LHC, both in $pp$ and heavy ion collisions. We first demonstrate that the source of difference between our predictions and other results in the literature for PI muon pair production is dominantly due to an unphysical cut that is imposed in these latter results on the dimuon-hadron impact parameter. We in addition show that this is experimentally disfavoured by the shape of the muon kinematic distributions measured by ATLAS in ultraperipheral PbPb collisions. We then consider the theoretical uncertainty due to the survival probability for no additional hadron-hadron interactions, and in particular the role this may play in the tendency for the predicted cross sections to lie somewhat above ATLAS data on PI muon pair production, in both $pp$ and PbPb collisions. This difference is relatively mild, at the $sim 10%$ level, and hence a very good control over the theory is clearly required. We show that this uncertainty is very small, and it is only by taking very extreme and rather unphysical variations in the modelling of the survival factor that this tension can be removed. This underlines the basic, rather model independent, point that a significant fraction of elastic PI scattering occurs for hadron-hadron impact parameters that are simply outside the range of QCD interactions, and hence this sets a lower bound on the survival factor in any physically reasonable approach. Finally, other possible origins for this discrepancy are discussed.