The JCMT Transient Survey: Detection of sub-mm variability in a Class I protostar EC 53 in Serpens Main


Abstract in English

During the protostellar phase of stellar evolution, accretion onto the star is expected to be variable, but this suspected variability has been difficult to detect because protostars are deeply embedded. In this paper, we describe a sub-mm luminosity burst of the Class I protostar EC 53 in Serpens Main, the first variable found during our dedicated JCMT/SCUBA-2 monitoring program of eight nearby star-forming regions. EC 53 remained quiescent for the first 6 months of our survey, from February to August 2016. The sub-mm emission began to brighten in September 2016, reached a peak brightness of $1.5$ times the faint state, and has been decaying slowly since February 2017. The change in sub-mm brightness is interpreted as dust heating in the envelope, generated by a luminosity increase of the protostar of a factor of $ge 4$. The 850~$mu$m lightcurve resembles the historical $K$-band lightcurve, which varies by a factor of $sim 6$ with a 543 period and is interpreted as accretion variability excited by interactions between the accretion disk and a close binary system. The predictable detections of accretion variability observed at both near-infrared and sub-mm wavelengths make the system a unique test-bed, enabling us to capture the moment of the accretion burst and to study the consequences of the outburst on the protostellar disk and envelope.

Download