Do you want to publish a course? Click here

Predicting acoustic relaxation absorption in gas mixtures for extraction of composition relaxation contributions

123   0   0.0 ( 0 )
 Added by Tingting Liu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The existing molecular relaxation models based on both parallel relaxation theory and series relaxation theory cannot extract the contributions of gas compositions to acoustic relaxation absorption in mixtures. In this paper, we propose an analytical model to predict acoustic relaxation absorption and clarify composition relaxation contributions based on the rate-determining energy transfer processes in molecular relaxation in excitable gases. By combining parallel and series relaxation theory, the proposed model suggests that the vibration-translation process of the lowest vibrational mode in each composition provides the primary deexcitation path of the relaxation energy, and the rate-determining vibration-vibration processes between the lowest mode and others dominate the coupling energy transfer between different modes. Thus, each gas composition contributes directly one single relaxation process to the molecular relaxation in mixture, which can be illustrated by the decomposed acoustic relaxation absorption spectrum of the single relaxation process. The proposed model is validated by simulation results in good agreement with experimental data such as $mathrm{N_2}$, $mathrm{O_2}$, $mathrm{CO_2}$, $mathrm{CH_4}$ and their mixtures.



rate research

Read More

In the lithium-ion battery literature, discharges followed by a relaxation to equilibrium are frequently used to validate models and their parametrizations. Good agreement with experiment during discharge is easily attained with a pseudo-two-dimensional model such as the Doyle-Fuller-Newman (DFN) model. The relaxation portion, however, is typically not well-reproduced, with the relaxation in experiments occurring much more slowly than in models. In this study, using a model that includes a size distribution of the active material particles, we give a physical explanation for the slow relaxation phenomenon. This model, the Many-Particle-DFN (MP-DFN), is compared against discharge and relaxation data from the literature, and optimal fits of the size distribution parameters (mean and variance), as well as solid-state diffusivities, are found using numerical optimization. The voltage after relaxation is captured by careful choice of the current cut-off time, allowing a single set of physical parameters to be used for all C-rates, in contrast to previous studies. We find that the MP-DFN can accurately reproduce the slow relaxation, across a range of C-rates, whereas the DFN cannot. Size distributions allow for greater internal heterogeneities, giving a natural origin of slower relaxation timescales that may be relevant in other, as yet explained, battery behavior.
177 - H. Ruf , C. Handschin , A. Ferre 2012
We study theoretically and experimentally the electronic relaxation of NO2 molecules excited by absorption of one ~400 nm pump photon. Semi-classical simulations based on trajectory surface hopping calculations are performed. They predict fast oscillations of the electronic character around the intersection of the ground and first excited diabatic states. An experiment based on high-order harmonic transient grating spectroscopy reveals dynamics occuring on the same timescale. A systematic study of the detected transient is conducted to investigate the possible influence of the pump intensity, pump wavelength, and rotational temperature of the molecules. The quantitative agreement between measured and predicted dynamics shows that, in NO2, high harmonic transient grating spectroscopy encodes vibrational dynamics underlying the electronic relaxation.
Hydrogen-bonded mixtures with varying concentration are a complicated networked system that demands a detection technique with both time and frequency resolutions. Hydrogen-bonded pyridine-water mixtures are studied by a time-frequency resolved coherent Raman spectroscopic technique. Femtosecond broadband dual-pulse excitation and delayed picosecond probing provide sub-picosecond time resolution in the mixtures temporal evolution. For different pyridine concentrations in water, asymmetric blue versus red shifts (relative to pure pyridine spectral peaks) were observed by simultaneously recording both the coherent anti-Stokes and Stokes Raman spectra. Macroscopic coherence dephasing times for the perturbed pyridine ring modes were observed in ranges of 0.9 - 2.6 picoseconds for both 18 and 10 cm-1 broad probe pulses. For high pyridine concentrations in water, an additional spectral broadening (or escalated dephasing) for a triangular ring vibrational mode was observed. This can be understood as a result of ultrafast collective emissions from coherently excited ensemble of pairs of pyridine molecules bound to water molecules.
Utilizing the effect of losses, we show that symmetric 3-port devices exhibit coherent perfect absorption of waves and we provide the corresponding conditions on the reflection and transmission coefficients. Infinite combinations of asymmetric inputs with different amplitudes and phase at each port as well as a completely symmetric input, are found to be perfectly absorbed. To illustrate the above we study an acoustic 3-port network operating in a subwavelength frequency both theoretically and experimentally. In addition we show how the output from a 3-port network is altered, when conditions of perfect absorption are met but the input waves phase and amplitude vary. In that regard, we propose optimized structures which feature both perfect absorption and perfect transmission at the same frequency by tuning the amplitudes and phases of the input waves.
225 - Fang Fang , Shun Wu , Aaron Smull 2019
We measure the interspecies interaction strength between $^7$Li and $^{87}$Rb atoms through cross-dimensional relaxation of two-element gas mixtures trapped in a spherical quadrupole magnetic trap. We record the relaxation of an initial momentum-space anisotropy in a lithium gas when co-trapped with rubidium atoms, with both species in the $|F=1, m_F = -1rangle$ hyperfine state. Our measurements are calibrated by observing cross-dimensional relaxation of a $^{87}$Rb-only trapped gas. Through Monte Carlo simulations, we compare the observed relaxation to that expected given the theoretically predicted energy-dependent differential cross section for $^7$Li-$^{87}$Rb collisions. The experimentally observed relaxation occurs significantly faster than predicted theoretically, a deviation that appears incompatible with other experimental data characterising the $^7$Li-$^{87}$Rb molecular potential.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا