Do you want to publish a course? Click here

Paving the way to simultaneous multi-wavelength astronomy

72   0   0.0 ( 0 )
 Added by Matthew Middleton
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Whilst astronomy as a science is historically founded on observations at optical wavelengths, studying the Universe in other bands has yielded remarkable discoveries, from pulsars in the radio, signatures of the Big Bang at submm wavelengths, through to high energy emission from accreting, gravitationally-compact objects and the discovery of gamma-ray bursts. Unsurprisingly, the result of combining multiple wavebands leads to an enormous increase in diagnostic power, but powerful insights can be lost when the sources studied vary on timescales shorter than the temporal separation between observations in different bands. In July 2015, the workshop Paving the way to simultaneous multi-wavelength astronomy was held as a concerted effort to address this at the Lorentz Center, Leiden. It was attended by 50 astronomers from diverse fields as well as the directors and staff of observatories and spaced-based missions. This community white paper has been written with the goal of disseminating the findings of that workshop by providing a concise review of the field of multi-wavelength astronomy covering a wide range of important source classes, the problems associated with their study and the solutions we believe need to be implemented for the future of observational astronomy. We hope that this paper will both stimulate further discussion and raise overall awareness within the community of the issues faced in a developing, important field.



rate research

Read More

AstroSat is a multi-wavelength astronomy satellite, launched on 2015 September 28. It carries a suite of scientific instruments for multi-wavelength observations of astronomical sources. It is a major Indian effort in space astronomy and the context of AstroSat is examined in a historical perspective. The Performance Verification phase of AstroSat has been completed and all instruments are working flawlessly and as planned. Some brief highlights of the scientific results are also given here.
This review arose from the European Radio Astronomy Technical Forum (ERATec) meeting held in Firenze, October 2015, and aims to highlight the breadth and depth of the high-impact science that will be aided and assisted by the use of simultaneous mm-wavelength receivers. Recent results and opportunities are presented and discussed from the fields of: continuum VLBI (observations of weak sources, astrometry, observations of AGN cores in spectral index and Faraday rotation), spectral line VLBI (observations of evolved stars and massive star-forming regions) and time domain observations of the flux variations arising in the compact jets of X-ray binaries. Our survey brings together a large range of important science applications, which will greatly benefit from simultaneous observing at mm-wavelengths. Such facilities are essential to allow these applications to become more efficient, more sensitive and more scientifically robust. In some cases without simultaneous receivers the science goals are simply unachievable. Similar benefits would exist in many other high frequency astronomical fields of research.
273 - B. Mennesson 2020
This document summarizes how far the Nancy Grace Roman Space Telescope Coronagraph Instrument (Roman CGI) will go toward demonstrating high-contrast imaging and spectroscopic requirements for potential future exoplanet direct imaging missions, illustrated by the HabEx and LUVOIR concepts. The assessment is made for two levels of assumed CGI performance: (i) current best estimate (CBE) as of August 2020, based on laboratory results and realistic end-to-end simulations with JPL-standard Model Uncertainty Factors (MUFs); (ii) CGI design specifications inherited from Phase B requirements. We find that the predicted performance (CBE) of many CGI subsystems compares favorably with the needs of future missions, despite providing more modest point source detection limits than future missions. This is essentially due to the challenging pupil of the Roman Space Telescope; this pupil pushes the coronagraph masks sensitivities to misalignments to be commensurate with future missions. In particular, CGI will demonstrate active low-order wavefront control and photon counting capabilities at levels of performance either higher than, or comparable to, the needs of future missions.
Designing software that controls industrial equipment is challenging, especially due to its inherent concurrent nature. Testing this kind of event driven control software is difficult and, due to the large number of possible execution scenarios only a low dynamic test coverage is achieved in practice. This in turn is undesirable due to the high cost of software failure for this type of equipment. In this paper we describe the Dezyne language and tooling; Dezyne is a programming language aimed at software engineers designing large industrial control software. We discuss its underlying two layered and compositional approach that enables reaping the benefits of Formal Methods, hereby strongly supporting guiding principles of software engineering. The core of Dezyne uses the mCRL2 language and model-checker (Jan Friso Groote et al.) to verify the correctness and completeness of all possible execution scenarios. The IDE of Dezyne is based on the Language Server Protocol allowing a smooth integration with e.g., Visual Studio Code, and Emacs, extended with several automatically generated interactive graphical views. We report on the introduction of Dezyne and its predecessor at several large high-tech equipment manufacturers resulting in a decrease of software developing time and a major decrease of reported field defects.
Cosmic rays (CRs) propagate in the Milky Way and interact with the interstellar medium and magnetic fields. These interactions produce emissions that span the electromagnetic spectrum, and are an invaluable tool for understanding the intensities and spectra of CRs in distant regions, far beyond those probed by direct CR measurements. We present updates on the study of CR properties by combining multi-frequency observations of the interstellar emission and latest CR direct measurements with propagation models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا