No Arabic abstract
We investigate the statistical properties of interfering directed paths in disordered media. At long distance, the average sign of the sum over paths may tend to zero (sign-disordered) or remain finite (sign-ordered) depending on dimensionality and the concentration of negative scattering sites $x$. We show that in two dimensions the sign-ordered phase is unstable even for arbitrarily small $x$ by identifying rare destabilizing events. In three dimensions, we present strong evidence that there is a sign phase transition at a finite $x_c > 0$. These results have consequences for several different physical systems. In 2D insulators at low temperature, the variable range hopping magnetoresistance is always negative, while in 3D, it changes sign at the point of the sign phase transition. We also show that in the sign-disordered regime a small magnetic field may enhance superconductivity in a random system of D-wave superconducting grains embedded into a metallic matrix. Finally, the existence of the sign phase transition in 3D implies new features in the spin glass phase diagram at high temperature.
We study sums of directed paths on a hierarchical lattice where each bond has either a positive or negative sign with a probability $p$. Such path sums $J$ have been used to model interference effects by hopping electrons in the strongly localized regime. The advantage of hierarchical lattices is that they include path crossings, ignored by mean field approaches, while still permitting analytical treatment. Here, we perform a scaling analysis of the controversial ``sign transition using Monte Carlo sampling, and conclude that the transition exists and is second order. Furthermore, we make use of exact moment recursion relations to find that the moments $<J^n>$ always determine, uniquely, the probability distribution $P(J)$. We also derive, exactly, the moment behavior as a function of $p$ in the thermodynamic limit. Extrapolations ($nto 0$) to obtain $<ln J>$ for odd and even moments yield a new signal for the transition that coincides with Monte Carlo simulations. Analysis of high moments yield interesting ``solitonic structures that propagate as a function of $p$. Finally, we derive the exact probability distribution for path sums $J$ up to length L=64 for all sign probabilities.
We analyze the statistics of the shortest and fastest paths on the road network between randomly sampled end points. To a good approximation, these optimal paths are found to be directed in that their lengths (at large scales) are linearly proportional to the absolute distance between them. This motivates comparisons to universal features of directed polymers in random media. There are similarities in scalings of fluctuations in length/time and transverse wanderings, but also important distinctions in the scaling exponents, likely due to long-range correlations in geographic and man-made features. At short scales the optimal paths are not directed due to circuitous excursions governed by a fat-tailed (power-law) probability distribution.
A wave function exposed to measurements undergoes pure state dynamics, with deterministic unitary and probabilistic measurement induced state updates, defining a quantum trajectory. For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions. To access it despite the randomness of single quantum trajectories, we construct an $n$-replica Keldysh field theory for the ensemble average of the $n$-th moment of the trajectory projector. A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely, while $n-1$ others can be cast into the form of pure state evolutions generated by an effective non-Hermitian Hamiltonian. This decoupling is exact for free theories, and useful for interacting ones. In particular, we study locally measured Dirac fermions in $(1+1)$ dimensions, which can be bosonized to a monitored interacting Luttinger liquid at long wavelengths. For this model, the non-Hermitian Hamiltonian corresponds to a quantum Sine-Gordon model with complex coefficients. A renormalization group analysis reveals a gapless critical phase with logarithmic entanglement entropy growth, and a gapped area law phase, separated by a Berezinskii-Kosterlitz-Thouless transition. The physical picture emerging here is a pinning of the trajectory wave function into eigenstates of the measurement operators upon increasing the monitoring rate.
In this paper in terms of the replica method we consider the high temperature limit of (2+1) directed polymers in a random potential and propose an approach which allows to compute the scaling exponent $theta$ of the free energy fluctuations as well as the left tail of its probability distribution function. It is argued that $theta = 1/2$ which is different from the zero-temperature numerical value which is close to 0.241. This result implies that unlike the $(1+1)$ system in the two-dimensional case the free energy scaling exponent is non-universal being temperature dependent.
We consider the Larkin model of a directed polymer with Gaussian-distributed random forces, with the addition of a resetting process whereby the transverse position of the end-point of the polymer is reset to zero with constant rate $r$. We express the average over disorder of the mean time to absorption by an absorbing target at a fixed value of the transverse position. Thanks to the independence properties of the distribution of the random forces, this expression is analogous to the mean time to absorption for a diffusive particle under resetting, which possesses a single minimum at an optimal value $r^ast$ of the resetting rate . Moreover, the mean time to absorption can be expanded as a power series of the amplitude of the disorder, around the value $r^ast$ of the resetting rate. We obtain the susceptibility of the optimal resetting rate to disorder in closed form, and find it to be positive.