Do you want to publish a course? Click here

Online Learning in Weakly Coupled Markov Decision Processes: A Convergence Time Study

109   0   0.0 ( 0 )
 Added by Xiaohan Wei
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider multiple parallel Markov decision processes (MDPs) coupled by global constraints, where the time varying objective and constraint functions can only be observed after the decision is made. Special attention is given to how well the decision maker can perform in $T$ slots, starting from any state, compared to the best feasible randomized stationary policy in hindsight. We develop a new distributed online algorithm where each MDP makes its own decision each slot after observing a multiplier computed from past information. While the scenario is significantly more challenging than the classical online learning context, the algorithm is shown to have a tight $O(sqrt{T})$ regret and constraint violations simultaneously. To obtain such a bound, we combine several new ingredients including ergodicity and mixing time bound in weakly coupled MDPs, a new regret analysis for online constrained optimization, a drift analysis for queue processes, and a perturbation analysis based on Farkas Lemma.



rate research

Read More

We consider online learning for minimizing regret in unknown, episodic Markov decision processes (MDPs) with continuous states and actions. We develop variants of the UCRL and posterior sampling algorithms that employ nonparametric Gaussian process priors to generalize across the state and action spaces. When the transition and reward functions of the true MDP are members of the associated Reproducing Kernel Hilbert Spaces of functions induced by symmetric psd kernels (frequentist setting), we show that the algorithms enjoy sublinear regret bounds. The bounds are in terms of explicit structural parameters of the kernels, namely a novel generalization of the information gain metric from kernelized bandit, and highlight the influence of transition and reward function structure on the learning performance. Our results are applicable to multidimensional state and action spaces with composite kernel structures, and generalize results from the literature on kernelized bandits, and the adaptive control of parametric linear dynamical systems with quadratic costs.
We develop algorithms with low regret for learning episodic Markov decision processes based on kernel approximation techniques. The algorithms are based on both the Upper Confidence Bound (UCB) as well as Posterior or Thompson Sampling (PSRL) philosophies, and work in the general setting of continuous state and action spaces when the true unknown transition dynamics are assumed to have smoothness induced by an appropriate Reproducing Kernel Hilbert Space (RKHS).
The objective of this work is to study continuous-time Markov decision processes on a general Borel state space with both impulsive and continuous controls for the infinite-time horizon discounted cost. The continuous-time controlled process is shown to be non explosive under appropriate hypotheses. The so-called Bellman equation associated to this control problem is studied. Sufficient conditions ensuring the existence and the uniqueness of a bounded measurable solution to this optimality equation are provided. Moreover, it is shown that the value function of the optimization problem under consideration satisfies this optimality equation. Sufficient conditions are also presented to ensure on one hand the existence of an optimal control strategy and on the other hand the existence of an $varepsilon$-optimal control strategy. The decomposition of the state space in two disjoint subsets is exhibited where roughly speaking, one should apply a gradual action or an impulsive action correspondingly to get an optimal or $varepsilon$-optimal strategy. An interesting consequence of our previous results is as follows: the set of strategies that allow interventions at time $t=0$ and only immediately after natural jumps is a sufficient set for the control problem under consideration.
This paper extends to Continuous-Time Jump Markov Decision Processes (CTJMDP) the classic result for Markov Decision Processes stating that, for a given initial state distribution, for every policy there is a (randomized) Markov policy, which can be defined in a natural way, such that at each time instance the marginal distributions of state-action pairs for these two policies coincide. It is shown in this paper that this equality takes place for a CTJMDP if the corresponding Markov policy defines a nonexplosive jump Markov process. If this Markov process is explosive, then at each time instance the marginal probability, that a state-action pair belongs to a measurable set of state-action pairs, is not greater for the described Markov policy than the same probability for the original policy. These results are used in this paper to prove that for expected discounted total costs and for average costs per unit time, for a given initial state distribution, for each policy for a CTJMDP the described a Markov policy has the same or better performance.
113 - Thomas Furmston , Guy Lever 2013
Recently two approximate Newton methods were proposed for the optimisation of Markov Decision Processes. While these methods were shown to have desirable properties, such as a guarantee that the preconditioner is negative-semidefinite when the policy is $log$-concave with respect to the policy parameters, and were demonstrated to have strong empirical performance in challenging domains, such as the game of Tetris, no convergence analysis was provided. The purpose of this paper is to provide such an analysis. We start by providing a detailed analysis of the Hessian of a Markov Decision Process, which is formed of a negative-semidefinite component, a positive-semidefinite component and a remainder term. The first part of our analysis details how the negative-semidefinite and positive-semidefinite components relate to each other, and how these two terms contribute to the Hessian. The next part of our analysis shows that under certain conditions, relating to the richness of the policy class, the remainder term in the Hessian vanishes in the vicinity of a local optimum. Finally, we bound the behaviour of this remainder term in terms of the mixing time of the Markov chain induced by the policy parameters, where this part of the analysis is applicable over the entire parameter space. Given this analysis of the Hessian we then provide our local convergence analysis of the approximate Newton framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا