We show that it is possible to locate the event horizons of a black hole (in arbitrary dimensions) as the zeros of certain Cartan invariants. This approach accounts for the recent results on the detection of stationary horizons using scalar polynomial curvature invariants, and improves upon them since the proposed method is computationally less expensive. As an application, we produce Cartan invariants that locate the event horizons for various exact four-dimensional and five-dimensional stationary, asymptotically flat (or (anti) de Sitter) black hole solutions and compare the Cartan invariants with the corresponding scalar curvature invariants that detect the event horizon. In particular, for each of the four-dimensional examples we express the scalar polynomial curvature invariants introduced by Abdelqader and Lake in terms of the Cartan invariants and show a direct relationship between the scalar polynomial curvature invariants and the Cartan invariants that detect the horizon.