Do you want to publish a course? Click here

Perturbation Theory for Weak Measurements in Quantum Mechanics, I -- Systems with Finite-Dimensional State Space

130   0   0.0 ( 0 )
 Added by Martin Fraas
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum theory of indirect measurements in physical systems is studied. The example of an indirect measurement of an observable represented by a self-adjoint operator $mathcal{N}$ with finite spectrum is analysed in detail. The Hamiltonian generating the time evolution of the system in the absence of direct measurements is assumed to be given by the sum of a term commuting with $mathcal{N}$ and a small perturbation not commuting with $mathcal{N}$. The system is subject to repeated direct (projective) measurements using a single instrument whose action on the state of the system commutes with $mathcal{N}$. If the Hamiltonian commutes with the observable $mathcal{N}$ (i.e., if the perturbation vanishes) the state of the system approaches an eigenstate of $mathcal{N}$, as the number of direct measurements tends to $infty$. If the perturbation term in the Hamiltonian does textit{not} commute with $mathcal{N}$ the system exhibits jumps between different eigenstates of $mathcal{N}$. We determine the rate of these jumps to leading order in the strength of the perturbation and show that if time is re-scaled appropriately a maximum likelihood estimate of $mathcal{N}$ approaches a Markovian jump process on the spectrum of $mathcal{N}$, as the strength of the perturbation tends to $0$.



rate research

Read More

249 - Lisa C. Jeffrey 2012
In this article we describe the relation between the Chern-Simons gauge theory partition function and the partition function defined using the symplectic action functional as the Lagrangian. We show that the partition functions obtained using these two Lagrangians agree, and we identify the semiclassical formula for the partition function defined using the symplectic action functional.
173 - A. A. Kuznetsova 2010
In this paper a general definition of quantum conditional entropy for infinite-dimensional systems is given based on recent work of Holevo and Shirokov arXiv:1004.2495 devoted to quantum mutual and coherent informations in the infinite-dimensional case. The properties of the conditional entropy such as monotonicity, concavity and subadditivity are also generalized to the infinite-dimensional case.
318 - Cesare Tronci 2018
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Berry curvature, while its left leg is shown to lead to more general realizations of the density operator which have recently appeared in quantum molecular dynamics. Finally, the paper shows how alternative representations of both the density matrix and the classical density are equivariant momentum maps generating new Clebsch representations for both quantum and classical dynamics. Uhlmanns density matrix and Koopman-von Neumann wavefunctions are shown to be special cases of this construction.
The method, proposed in the given work, allows the application of well developed standard methods used in quantum mechanics for approximate solution of the systems of ordinary linear differential equations with periodical coefficients.
In this paper, we present a Hopf algebra description of a bosonic quantum model, using the elementary combinatorial elements of Bell and Stirling numbers. Our objective in doing this is as follows. Recent studies have revealed that perturbative quantum field theory (pQFT) displays an astonishing interplay between analysis (Riemann zeta functions), topology (Knot theory), combinatorial graph theory (Feynman diagrams) and algebra (Hopf structure). Since pQFT is an inherently complicated study, so far not exactly solvable and replete with divergences, the essential simplicity of the relationships between these areas can be somewhat obscured. The intention here is to display some of the above-mentioned structures in the context of a simple bosonic quantum theory, i.e. a quantum theory of non-commuting operators that do not depend on space-time. The combinatorial properties of these boson creation and annihilation operators, which is our chosen example, may be described by graphs, analogous to the Feynman diagrams of pQFT, which we show possess a Hopf algebra structure. Our approach is based on the quantum canonical partition function for a boson gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا