Do you want to publish a course? Click here

Towards information optimal simulation of partial differential equations

47   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Most simulation schemes for partial differential equations (PDEs) focus on minimizing a simple error norm of a discretized version of a field. This paper takes a fundamentally different approach; the discretized field is interpreted as data providing information about a real physical field that is unknown. This information is sought to be conserved by the scheme as the field evolves in time. Such an information theoretic approach to simulation was pursued before by information field dynamics (IFD). In this paper we work out the theory of IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an action that can be minimized to obtain an informationally optimal simulation scheme. It can be brought into a closed form using field operators to calculate the appearing Gaussian integrals. The resulting simulation schemes are tested numerically in two instances for the Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolution. The IFD scheme, however, has to be correctly informed on the subgrid correlation structure. In certain limiting cases we recover well-known simulation schemes like spectral Fourier Galerkin methods. We discuss implications of the approximations made.



rate research

Read More

We study the problem of optimal inside control of an SPDE (a stochastic evolution equation) driven by a Brownian motion and a Poisson random measure. Our optimal control problem is new in two ways: (i) The controller has access to inside information, i.e. access to information about a future state of the system, (ii) The integro-differential operator of the SPDE might depend on the control. In the first part of the paper, we formulate a sufficient and a necessary maximum principle for this type of control problem, in two cases: (1) When the control is allowed to depend both on time t and on the space variable x. (2) When the control is not allowed to depend on x. In the second part of the paper, we apply the results above to the problem of optimal control of an SDE system when the inside controller has only noisy observations of the state of the system. Using results from nonlinear filtering, we transform this noisy observation SDE inside control problem into a full observation SPDE insider control problem. The results are illustrated by explicit examples.
Kriging (or Gaussian process regression) is a popular machine learning method for its flexibility and closed-form prediction expressions. However, one of the key challenges in applying kriging to engineering systems is that the available measurement data is scarce due to the measurement limitations and high sensing costs. On the other hand, physical knowledge of the engineering system is often available and represented in the form of partial differential equations (PDEs). We present in this work a PDE Informed Kriging model (PIK), which introduces PDE information via a set of PDE points and conducts posterior prediction similar to the standard kriging method. The proposed PIK model can incorporate physical knowledge from both linear and nonlinear PDEs. To further improve learning performance, we propose an Active PIK framework (APIK) that designs PDE points to leverage the PDE information based on the PIK model and measurement data. The selected PDE points not only explore the whole input space but also exploit the locations where the PDE information is critical in reducing predictive uncertainty. Finally, an expectation-maximization algorithm is developed for parameter estimation. We demonstrate the effectiveness of APIK in two synthetic examples, a shock wave case study, and a laser heating case study.
We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Levy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Levy process with a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic splitting argument. The resulting error bound involves separate contributions of the compound Poisson approximation and of the discretization scheme for the Brownian part, and allows, on one hand, to balance the two contributions in order to minimize the computational time, and on the other hand, to study the optimal design of the approximating compound Poisson process. For driving processes whose Levy measure explodes near zero in a regularly varying way, this procedure allows to construct discretization schemes with arbitrary order of convergence.
In this paper, we introduce the concept of Developmental Partial Differential Equation (DPDE), which consists of a Partial Differential Equation (PDE) on a time-varying manifold with complete coupling between the PDE and the manifolds evolution. In other words, the manifolds evolution depends on the solution to the PDE, and vice versa the differential operator of the PDE depends on the manifolds geometry. DPDE is used to study a diffusion equation with source on a growing surface whose growth depends on the intensity of the diffused quantity. The surface may, for instance, represent the membrane of an egg chamber and the diffused quantity a protein activating a signaling pathway leading to growth. Our main objective is to show controllability of the surface shape using a fixed source with variable intensity for the diffusion. More specifically, we look for a control driving a symmetric manifold shape to any other symmetric shape in a given time interval. For the diffusion we take directly the Laplace-Beltrami operator of the surface, while the surface growth is assumed to be equal to the value of the diffused quantity. We introduce a theoretical framework, provide approximate controllability and show numerical results. Future applications include a specific model for the oogenesis of Drosophila melanogaster.
In this review paper, we explain how to apply Renormalization Group ideas to the analysis of the long-time asymptotics of solutions of partial differential equations. We illustrate the method on several examples of nonlinear parabolic equations. We discuss many applications, including the stability of profiles and fronts in the Ginzburg-Landau equation, anomalous scaling laws in reaction-diffusion equations, and the shape of a solution near a blow-up point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا