$mathbb{Z}_4$ parafermions can be realized in a strongly interacting quantum spin Hall Josephson junction or in a spin Hall Josephson junction strongly coupled to an impurity spin. In this paper we study a system that has both features, but with weak (repulsive) interactions and a weakly coupled spin. We show that for a strongly anisotropic exchange interaction, at low temperatures the system enters a strong coupling limit in which it hosts two $mathbb{Z}_4$ parafermions, characterizing a fourfold degeneracy of the ground state. We construct the parafermion operators explicitly, and show that they facilitate fractional $e/2$ charge tunneling across the junction. The dependence of the effective low-energy spectrum on the superconducting phase difference reveals an $8pi$ periodicity of the supercurrent.