Do you want to publish a course? Click here

Explicit construction of quasi-conserved local operator of translationally invariant non-integrable quantum spin chain in prethermalization

77   0   0.0 ( 0 )
 Added by Cheng-Ju Lin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We numerically construct translationally invariant quasi-conserved operators with maximum range M which best-commute with a non-integrable quantum spin chain Hamiltonian, up to M = 12. In the large coupling limit, we find that the residual norm of the commutator of the quasi-conserved operator decays exponentially with its maximum range M at small M, and turns into a slower decay at larger M. This quasi-conserved operator can be understood as a dressed total spin-z operator, by comparing with the perturbative Schrieffer-Wolff construction developed to high order reaching essentially the same maximum range. We also examine the operator inverse participation ratio of the operator, which suggests its localization in the operator Hilbert space. The operator also shows almost exponentially decaying profile at short distance, while the long-distance behavior is not clear due to limitations of our numerical calculation. Further dynamical simulation confirms that the prethermalization-equilibrated values are described by a generalized Gibbs ensemble that includes such quasi-conserved operator.



rate research

Read More

We consider the isotropic spin-1/2 Heisenberg spin chain weakly perturbed by a local translationally- and SU(2)-invariant perturbation. Starting from the local integrals of motion of the unperturbed model, we modify them in order to obtain quasi-conserved integrals of motion (charges) for the perturbed model. Such quasi-conserved quantities are believed to be responsible for the existence of the prethermalization phase at intermediate timescales. We find that for a sufficiently local perturbation only the first few integrals of motion can be promoted to the quasi-conserved charges, whereas higher-order integrals of motion do not survive.
We study the dynamics of a quantum Ising chain after the sudden introduction of a non-integrable long-range interaction. Via an exact mapping onto a fully-connected lattice of hard-core bosons, we show that a pre-thermal state emerges and we investigate its features by focusing on a class of physically relevant observables. In order to gain insight into the eventual thermalization, we outline a diagrammatic approach which complements the study of the previous quasi-stationary state and provides the basis for a self-consistent solution of the kinetic equation. This analysis suggests that both the temporal decay towards the pre-thermal state and the crossover to the eventual thermal one may occur algebraically.
Eigenstate Thermalization Hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Ba~{n}uls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2011)] of a nonintegrable quantum Ising model with longitudinal field under such quench setting found different behaviors for different initial quantum states. One particular case called weak thermalization regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We note that the corresponding initial state has low energy density relative to the ground state of the model. We then use perturbation theory near the ground state and identify the oscillation frequency as essentially a quasiparticle gap. With this quasiparticle picture, we can then address the long-time behavior of the oscillations. Upon making additional approximations which intuitively should only make thermalization weaker, we argue that the oscillations nevertheless decay in the long time limit. As part of our arguments, we also consider a quench from a BEC to a hard-core boson model in one dimension. We find that the expectation value of a single-boson creation operator oscillates but decays exponentially in time, while a pair-boson creation operator has oscillations with a $t^{-3/2}$ decay in time. We also study dependence of the decay time on the density of bosons in the low-density regime and use this to estimate decay time for oscillations in the original spin model.
We introduce a new class of open, translationally invariant spin chains with long-range interactions depending on both spin permutation and (polarized) spin reversal operators, which includes the Haldane-Shastry chain as a particular degenerate case. The new class is characterized by the fact that the Hamiltonian is invariant under twisted translations, combining an ordinary translation with a spin flip at one end of the chain. It includes a remarkable model with elliptic spin-spin interactions, smoothly interpolating between the XXX Heisenberg model with anti-periodic boundary conditions and a new open chain with sites uniformly spaced on a half-circle and interactions inversely proportional to the square of the distance between the spins. We are able to compute in closed form the partition function of the latter chain, thereby obtaining a complete description of its spectrum in terms of a pair of independent su(1|1) and ${rm su}(m/2)$ motifs when the number $m$ of internal degrees of freedom is even. This implies that the even $m$ model is invariant under the direct sum of the Yangians $Y$(gl(1|1)) and $Y$(gl$(0|m/2)$). We also analyze several statistical properties of the new chains spectrum. In particular, we show that it is highly degenerate, which strongly suggests the existence of an underlying (twisted) Yangian symmetry also for odd $m$.
We construct a model of short-range interacting Ising spins on a translationally invariant two-dimensional lattice that mimics a reversible circuit that multiplies or factorizes integers, depending on the choice of boundary conditions. We prove that, for open boundary conditions, the model exhibits no finite-temperature phase transition. Yet we find that it displays glassy dynamics with astronomically slow relaxation times, numerically consistent with a double exponential dependence on the inverse temperature. The slowness of the dynamics arises due to errors that occur during thermal annealing that cost little energy but flip an extensive number of spins. We argue that the energy barrier that needs to be overcome in order to heal such defects scales linearly with the correlation length, which diverges exponentially with inverse temperature, thus yielding the double exponential behavior of the relaxation time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا