Field-Induced Instability of a Gapless Spin Liquid with a Spinon Fermi Surface


Abstract in English

The ground state of the quantum kagome antiferromagnet Zn-brochantite, ZnCu$_3$(OH)$_6$SO$_4$, which is one of only a few known spin-liquid (SL) realizations in two or three dimensions, has been described as a gapless SL with a spinon Fermi surface. Employing nuclear magnetic resonance in a broad magnetic-field range down to millikelvin temperatures, we show that in applied magnetic fields this enigmatic state is intrinsically unstable against a SL with a full or a partial gap. A similar instability of the gapless Fermi-surface SL was previously encountered in an organic triangular-lattice antiferromagnet, suggesting a common destabilization mechanism that most likely arises from spinon pairing. A salient property of this instability is that an infinitesimal field suffices to induce it, as predicted theoretically for some other types of gapless SLs.

Download