No Arabic abstract
In the spirit of Mueller-Navelet dijet production, we propose and study the inclusive production of a forward $J/psi$ and a very backward jet at the LHC as an observable to reveal high-energy resummation effects `a la BFKL. We obtain several predictions, which are based on the various mechanisms discussed in the literature to describe the production of the $J/psi$, namely, NRQCD singlet and octet contributions, and the color evaporation model.
We propose and study the inclusive production of a forward $J/psi$ and a very backward jet at the LHC as an observable to reveal high-energy resummation effects `a la BFKL. Our different predictions are based on the various existing mechanisms to describe the production of the $J/psi$, namely, NRQCD singlet and octet contributions, and the color evaporation model.
We provide a description of the transverse momentum spectrum of single inclusive forward jets produced at the LHC, at the center-of-mass energies of 7 and 13 TeV, using the high energy factorization (HEF) framework. We subsequently study double inclusive forward jet production and, in particular, we calculate contributions to azimuthal angle distributions coming from double parton scattering. We also compare our results for double inclusive jet production to those obtained with the Pythia Monte Carlo generator. This comparison confirms that the HEF resummation acts like an initial state parton shower. It also points towards the need to include final state radiation effects in the HEF formalism.
The associated production of J/psi + gamma at the LHC is studied within the NRQCD framework. The signal we focus on is the production of a J/psi and an isolated photon produced back-to-back, with their transverse momenta balanced. It is shown that even for very large values of transverse momentum (pT of the order of 50 GeV) the dominant contribution to this process is not fragmentation. This is because of the fact that fragmentation-type contributions to the cross-section come from only a q q(bar) initial state, which is suppressed at the LHC. We identify gg-initiated diagrams higher-order in alpha(s) which do have fragmentation-type vertices. We find, however, that the contribution of these diagrams is negligibly small.
In this work, we investigate the prompt $J/psi$ production in associated with top quark pair to leading order in the nonrelativistic QCD factorization formalism at the LHC with $sqrt{s} =13$ TeV. In addition to the contribution from direct $J/psi$ production, we also include the indirect contribution from the directly produced heavier charmmonia $chi_{cJ}$ and $psi^prime$. We present the numerical results for the total and differential cross sections and find that the $sideset{^3}{^{(8)}_1}{mathop{{S}}}$ states give the dominant contributions. The prompt $tbar t J/psi$ signatures at the LHC are analyzed in the tetralepton channel $ppto (tto W^+(ell^+ u)b) (bar t to W^-(ell^- bar u)bar b) (J/psitomu^+mu^-)$ and trilepton channel $ppto (tto W(q q^prime)b) ( t to W(ell u) b) (J/psitomu^+mu^-)$, with the $J/psi$ mesons decaying into muon pair, and the top quarks decaying leptonically or hadronically. We find that $tbar t J/psi$ proudction can be potentially detected at the LHC, whose measurement is useful to test the heavy quarkonium production mechanism.
We study inclusive $J/psi$ photoproduction at NLO at large $P_T$ at HERA and the EIC. Our computation includes NLO QCD leading-$P_T$ corrections, QED contributions via an off-shell photon as well as those from $J/psi$+charm channels. For the latter, we employ the variable-flavour-number scheme. Our results are found to agree with the latest HERA data by H1 and provide, for the first time, a reliable estimate of the EIC reach for such a measurement. Finally, we demonstrate the observability of $J/psi$+charm production and the sensitivy to probe the non-perturbative charm content of the proton at high $x$, also known as intrinsic charm, at the EIC.