High-temperature scaling limit for directed polymers on a hierarchical lattice with bond disorder


Abstract in English

Diamond lattices are sequences of recursively-defined graphs that provide a network of directed pathways between two fixed root nodes, $A$ and $B$. The construction recipe for diamond graphs depends on a branching number $bin mathbb{N}$ and a segmenting number $sin mathbb{N}$, for which a larger value of the ratio $s/b$ intuitively corresponds to more opportunities for intersections between two randomly chosen paths. By attaching i.i.d. random variables to the bonds of the graphs, I construct a random Gibbs measure on the set of directed paths by assigning each path an energy given by summing the random variables along the path. For the case $b=s$, I propose a scaling regime in which the temperature grows along with the number of hierarchical layers of the graphs, and the partition function (the normalization factor of the Gibbs measure) appears to converge in law. I prove that all of the positive integer moments of the partition function converge in this limiting regime. The motivation of this work is to prove a functional limit theorem that is analogous to a previous result obtained in the $b<s$ case.

Download