No Arabic abstract
A finite non-classical framework for physical theory is described which challenges the conclusion that the Bell Inequality has been shown to have been violated experimentally, even approximately. This framework postulates the universe as a deterministic locally causal system evolving on a measure-zero fractal-like geometry $I_U$ in cosmological state space. Consistent with the assumed primacy of $I_U$, and $p$-adic number theory, a non-Euclidean (and hence non-classical) metric $g_p$ is defined on cosmological state space, where $p$ is a large but finite Pythagorean prime. Using number-theoretic properties of spherical triangles, the inequalities violated experimentally are shown to be $g_p$-distant from the CHSH inequality, whose violation would rule out local realism. This result fails in the singular limit $p=infty$, at which $g_p$ is Euclidean. Broader implications are discussed.
We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement characterization of this hybrid system may also be useful in quantum information applications.
The original formula of Bell inequality (BI) in terms of two-spin singlet has to be modified for the entangled-state with parallel spin polarization. Based on classical statistics of the particle-number correlation, we prove in this paper an extended BI, which is valid for two-spin entangled states with both parallel and antiparallel polarizations. The BI and its violation can be formulated in a unified formalism based on the spin coherent-state quantum probability statistics with the state-density operator, which is separated to the local and non-local parts. The local part gives rise to the BI, while the violation is a direct result of the non-local quantum interference between two components of entangled state. The Bell measuring outcome correlation denoted by $P_{B}$ is always less than or at most equal to one for the local realistic model ($P_{B}^{lc}leq1$) regardless of the specific superposition coefficients of entangled state. Including the non-local quantum interference the maximum violation of BI is found as $P_{B}^{max}$ $=2$, which, however depends on state parameters and three measuring directions as well. Our result is suitable for entangled photon pairs.
Quantum mechanics can produce correlations that are stronger than classically allowed. This stronger-than-classical correlation is the fuel for quantum computing. In 1991 Schumacher forwarded a beautiful geometric approach, analogous to the well-known result of Bell, to capture non-classicality of this correlation for a singlet state. He used well-established information distance defined on an ensemble of identically-prepared states. He calculated that for certain detector settings used to measure the entangled state, the resulting geometry violated a triangle inequality -- a violation that is not possible classically. This provided a novel information-based geometric Bell inequality in terms of a covariance distance. Here we experimentally-reproduce his construction and demonstrate a definitive violation for a Bell state of two photons based on the usual spontaneous parametric down-conversion in a paired BBO crystal. The state we produced had a visibility of $V_{ad}=0.970$. We discuss generalizations to higher dimensional multipartite quantum states.
The violation of a Bell inequality is the paradigmatic example of device-independent quantum information: the nonclassicality of the data is certified without the knowledge of the functioning of devices. In practice, however, all Bell experiments rely on the precise understanding of the underlying physical mechanisms. Given that, it is natural to ask: Can one witness nonclassical behaviour in a truly black-box scenario? Here we propose and implement, computationally and experimentally, a solution to this ab-initio task. It exploits a robust automated optimization approach based on the Stochastic Nelder-Mead algorithm. Treating preparation and measurement devices as black-boxes, and relying on the observed statistics only, our adaptive protocol approaches the optimal Bell inequality violation after a limited number of iterations for a variety photonic states, measurement responses and Bell scenarios. In particular, we exploit it for randomness certification from unknown states and measurements. Our results demonstrate the power of automated algorithms, opening a new venue for the experimental implementation of device-independent quantum technologies.
We demonstrate hybrid entanglement of photon pairs via the experimental violation of a Bell inequality with two different degrees of freedom (DOF), namely the path (linear momentum) of one photon and the polarization of the other photon. Hybrid entangled photon pairs are created by Spontaneous Parametric Down Conversion and coherent polarization to path conversion for one photon. For that photon, path superposition is analyzed, and polarization superposition for its twin photon. The correlations between these two measurements give an S-parameter of S=2.653+/-0.027 in a CHSH inequality and thus violate local realism for two different DOF by more than 24 standard deviations. This experimentally supports the idea that entanglement is a fundamental concept which is indifferent to the specific physical realization of Hilbert space.