Do you want to publish a course? Click here

Towards a census of high-redshift dusty galaxies with $mathit{Herschel}$: A selection of 500 $mu$m-risers

76   0   0.0 ( 0 )
 Added by Darko Donevski
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

$mathit{Herschel}$ extragalactic surveys offer a unique opportunity to efficiently select a significant number of rare and massive dusty objects, and thus gain insight into the prodigious star-forming activity that takes place in the very distant Universe. To search for $zgeq4$ dusty star-forming galaxies, in this work we consider red SPIRE objects with fluxes rising from 250 $mu$m to $500:mu$m (so-called 500 $mu$m-risers). We aim to implement a novel method to obtain a statistical sample of 500 $mu$m-risers and fully evaluate our selection inspecting different models of galaxy evolution. We consider one of the largest and deepest ${it Herschel}$ surveys, the Herschel Virgo Cluster Survey. We develop a novel selection algorithm which links the source extraction and spectral energy distribution fitting. We select 133 500 $mu$m-risers over 55 deg$^{2}$, imposing the criteria: $S_{500}>S_{350}>S_{250}$, $S_{250}>13.2$ mJy and $S_{500}>$30 mJy. Differential number counts are in a fairly good agreement with models, displaying better match than other existing samples. In order to interpret the statistical properties of selected sources, which has been proven as a very challenging task due the complexity of observed artefacts, we make end-to-end simulations including physical clustering and lensing. The estimated fraction of strongly lensed sources is $24^{+6}_{-5}%$ based on models. We present the faintest known statistical sample of 500 $mu$m-risers and show that noise and strong lensing have crucial impact on measured counts and redshift distribution of selected sources. We estimate the flux-corrected star formation rate density at $4<z<5$ with the 500 $mu$m-risers and found it close to the total value measured in far-infrared. It indicates that colour selection is not a limiting effect to search for the most massive, dusty $z>4$ sources.



rate research

Read More

We present a sample of 80 candidate strongly lensed galaxies with flux density above 100mJy at 500{mu}m extracted from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), over an area of 600 square degrees. Available imaging and spectroscopic data allow us to confirm the strong lensing in 20 cases and to reject it in one case. For other 8 objects the lensing scenario is strongly supported by the presence of two sources along the same line of sight with distinct photometric redshifts. The remaining objects await more follow-up observations to confirm their nature. The lenses and the background sources have median redshifts z_L = 0.6 and z_S = 2.5, respectively, and are observed out to z_L = 1.2 and z_S = 4.2. We measure the number counts of candidate lensed galaxies at 500{mu}m and compare them with theoretical predictions, finding a good agreement for a maximum magnification of the background sources in the range 10-20. These values are consistent with the magnification factors derived from the lens modelling of individual systems. The catalogue presented here provides sub- mm bright targets for follow-up observations aimed at exploiting gravitational lensing to study with un-precedented details the morphological and dynamical properties of dusty star forming regions in z >~ 1.5 galaxies.
143 - A. Enia , M. Negrello , M. Gurwell 2018
We perform lens modelling and source reconstruction of Submillimeter Array (SMA) data for a sample of 12 strongly lensed galaxies selected at 500$mu$m in the Herschel Astrophysical Terahertz Large Area Survey H-ATLAS. A previous analysis of the same dataset used a single S`ersic profile to model the light distribution of each background galaxy. Here we model the source brightness distribution with an adaptive pixel scale scheme, extended to work in the Fourier visibility space of interferometry. We also present new SMA observations for seven other candidate lensed galaxies from the H-ATLAS sample. Our derived lens model parameters are in general consistent with previous findings. However, our estimated magnification factors, ranging from 3 to 10, are lower. The discrepancies are observed in particular where the reconstructed source hints at the presence of multiple knots of emission. We define an effective radius of the reconstructed sources based on the area in the source plane where emission is detected above 5$sigma$. We also fit the reconstructed source surface brightness with an elliptical Gaussian model. We derive a median value $r_{eff},sim 1.77,$kpc and a median Gaussian full width at half maximum $sim1.47,$kpc. After correction for magnification, our sources have intrinsic star formation rates SFR$,sim900-3500,M_{odot}yr^{-1}$, resulting in a median star formation rate surface density $Sigma_{SFR}sim132,M_{odot}$ yr$^{-1}$ kpc$^{-2}$ (or $sim 218,M_{odot}$ yr$^{-1}$ kpc$^{-2}$ for the Gaussian fit). This is consistent with what observed for other star forming galaxies at similar redshifts, and is significantly below the Eddington limit for a radiation pressure regulated starburst.
158 - G.E. Magdis 2011
Using Herschel PACS and SPIRE observations as part of the HerMES, we explore the far-IR properties of a sample of mid-IR selected starburst dominated ultra-luminous infrared galaxies (ULIRGs) at z ~ 2. We derive robust estimates of infrared luminosities (L_IR) and dust temperatures (Td) of the population and find that galaxies in our sample range from those that are as cold as high-z sub-millimeter galaxies (SMGs) to those that are as warm as optically faint radio galaxies (OFRGs) and local ULIRGs. We also demonstrate that a significant fraction of our sample would be missed from ground based (sub)mm surveys (850-1200{mu}m) showing that the latter introduce a bias towards the detection of colder sources. Similarly, based on PACS data as part of the PEP project, we construct for the first time the full average SED of a sub-sample of infrared luminous Lyman break galaxies at z ~ 3, and find them to have higher T_d when compared to that of SMGs with comparable L_IR. We conclude that high-z ULIRGs span a wide range of dust temperatures, larger than that seen in local ULIRGs, and that Herschel data provide the means to characterize the bulk of the ULIRG population, free from selection biases introduced by ground based (sub)mm surveys.
We present SMA observations at resolutions from 0.35 to 3 arcseconds of a sample of 34 candidate high redshift dusty star forming galaxies (DSFGs). These sources were selected from the HerMES Herschel survey catalogues to have SEDs rising from 250 to 350 to 500$mu$m, a population termed 500-risers. We detect counterparts to 24 of these sources, with four having two counterparts. We conclude that the remaining ten sources that lack detected counterparts are likely to have three or more associated sources which blend together to produce the observed Herschel source. We examine the role of lensing, which is predicted to dominate the brightest (F500 $>$ 60mJy) half of our sample. We find that while lensing plays a role, at least 35% of the bright sources are likely to be multiple sources rather than the result of lensing. At fainter fluxes we find a blending rate comparable to, or greater than, the predicted 40%. We determine far-IR luminosities and star formation rates for the non-multiple sources in our sample and conclude that, in the absence of strong lensing, our 500-risers are very luminous systems with L$_{FIR} > 10^{13}$L$_{odot}$ and star formation rates $> 1000$M$_{odot}$/yr.
Dusty high-z galaxies are extreme objects with high star formation rates (SFRs) and luminosities. Characterising the properties of this population and analysing their evolution over cosmic time is key to understanding galaxy evolution in the early Universe. We select a sample of high-z dusty star-forming galaxies (DSFGs) and evaluate their position on the main sequence (MS) of star-forming galaxies, the well-known correlation between stellar mass and SFR. We aim to understand the causes of their high star formation and quantify the percentage of DSFGs that lie above the MS. We adopted a multi-wavelength approach with data from optical to submillimetre wavelengths from surveys at the North Ecliptic Pole (NEP) to study a submillimetre sample of high-redshift galaxies. Two submillimetre selection methods were used, including: sources selected at 850$mathrm{, mu m}$ with the Sub-millimetre Common-User Bolometer Array 2) SCUBA-2 instrument and {it Herschel}-Spectral and Photometric Imaging Receiver (SPIRE) selected sources (colour-colour diagrams and 500$mathrm{, mu m}$ risers), finding that 185 have good multi-wavelength coverage. The resulting sample of 185 high-z candidates was further studied by spectral energy distribution (SED) fitting with the CIGALE fitting code. We derived photometric redshifts, stellar masses, SFRs, and additional physical parameters, such as the infrared luminosity and active galactic nuclei (AGN) contribution. We find that the different results in the literature are, only in part, due to selection effects. The difference in measured SFRs affects the position of DSFGs on the MS of galaxies; most of the DSFGs lie on the MS (60%). Finally, we find that the star formation efficiency (SFE) depends on the epoch and intensity of the star formation burst in the galaxy; the later the burst, the more intense the star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا