Do you want to publish a course? Click here

Spontaneous $CP$ breaking in QCD and the axion potential: an effective Lagrangian approach

86   0   0.0 ( 0 )
 Added by Giancarlo Rossi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the well-known low-energy effective Lagrangian of QCD --valid for small (non-vanishing) quark masses and a large number of colors-- we study in detail the regions of parameter space where $CP$ is spontaneously broken/unbroken for a vacuum angle $theta= pi$. In the $CP$-broken region there are first order phase transitions as one crosses $theta=pi$, while on the (hyper)surface separating the two regions, there are second order phase transitions signaled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the $CP$ spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised when the QCD parameters fall in the above mentioned $CP$-broken region, in spite of the fact that the axion solves the strong-$CP$ problem. These latter results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.



rate research

Read More

64 - P.Cea , M.Consoli , L.Cosmai 1995
We present a precise lattice computation of the slope of the effective potential for massless $(lambdaPhi^4)_4$ theory in the region of bare parameters indicated by the Brahms analysis of lattice data. Our results confirm the existence on the lattice of a remarkable phase of $(lambdaPhi^4)_4$ where Spontaneous Symmetry Breaking is generated through ``dimensional transmutation. The resulting effective potential shows no evidence for residual self-interaction effects of the shifted `Higgs field $h(x)=Phi(x)-langlePhirangle$, as predicted by ``triviality, and cannot be reproduced in perturbation theory. Accordingly the mass of the Higgs particle, by itself, does not represent a measure of any observable interaction.
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of inertial spontaneous symmetry breaking that does not involve a potential. This is dictated by the structure of the Weyl current, $K_mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEVs of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.
We discuss the local (gauged) Weyl symmetry and its spontaneous breaking and apply it to model building beyond the Standard Model (SM) and inflation. In models with non-minimal couplings of the scalar fields to the Ricci scalar, that are conformal invariant, the spontaneous generation by a scalar field(s) vev of a positive Newton constant demands a negative kinetic term for the scalar field, or vice-versa. This is naturally avoided in models with additional Weyl gauge symmetry. The Weyl gauge field $omega_mu$ couples to the scalar sector but not to the fermionic sector of a SM-like Lagrangian. The field $omega_mu$ undergoes a Stueckelberg mechanism and becomes massive after eating the (radial mode) would-be-Goldstone field (dilaton $rho$) in the scalar sector. Before the decoupling of $omega_mu$, the dilaton can act as UV regulator and maintain the Weyl symmetry at the {it quantum} level, with relevance for solving the hierarchy problem. After the decoupling of $omega_mu$, the scalar potential depends only on the remaining (angular variables) scalar fields, that can be the Higgs field, inflaton, etc. We show that successful inflation is then possible with one of these scalar fields identified as the inflaton. While our approach is derived in the Riemannian geometry with $omega_mu$ introduced to avoid ghosts, the natural framework is that of Weyl geometry which for the same matter spectrum is shown to generate the same Lagrangian, up to a total derivative.
127 - Todd Fugleberg 1999
In an effective Lagrangian approach to QCD we nonperturbatively calculate an analytic approximation to the decay rate of a false vacuum per unit volume, $Gamma/V$. We do so for both zero and high temperature theories. This result is important for the study of the early universe at around the time of the QCD phase transition. It is also important in order to determine the possibility of observing this false vacuum decay at the Relativistic Heavy Ion Collider (RHIC). Previously described dramatic signatures of the decay of false vacuum bubbles would occur in our case as well.
211 - She-Sheng Xue 2020
We study the Peccei-Quinn (PQ) symmetry of sterile right-handed neutrino sector and the gauge symmetries of the Standard Model (SM). Due to four-fermion interactions, spontaneous breaking of these symmetries at the electroweak scale generates top-quark Dirac mass and sterile neutrino Majorana mass. The top quark channels yields massive Higgs, $W^pm$ and $Z^0$ bosons. The sterile neutrino channel yields the heaviest sterile neutrino Majorana mass, sterile Nambu-Goldstone axion (or majoron) and massive scalar $chi$boson ($m_chisim 10^2$ GeV). Their tiny couplings to SM particles are effectively induced by four-fermion operators. We show that such sterile axion is the PQ solution to the strong CP problem. The lightest sterile neutrino ($m_N^esim 10^2$ keV), sterile QCD axion ($m_a< 10^{-6}$ eV, $g_{agamma}< 10^{-13} {rm GeV}^{-1}$) and $chi$boson can be dark matter particle candidates, for their tiny couplings and long lifetimes inferred from the Xenon1T experiment. The axion and $chi$boson couplings to SM particles are below the values reached by current laboratory experiments and astrophysical observations for directly or indirectly detecting dark matter particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا