No Arabic abstract
We use the Gutzwiller Monte Carlo approach to simulate the dissipative XYZ-model in the vicinity of a dissipative phase transition. This approach captures classical spatial correlations together with the full on-site quantum behavior, while neglecting non-local quantum effects. By considering finite two-dimensional lattices of various sizes, we identify a ferromagnetic and two paramagnetic phases, in agreement with earlier studies. The greatly reduced numerical complexity the Gutzwiller Monte Carlo approach facilitates efficient simulation of relatively large lattice sizes. The inclusion of the spatial correlations allows to describe critical behavior which is completely missed by the widely applied Gutzwiller decoupling of the density matrix.
We theoretically investigate the critical properties of a single driven-dissipative nonlinear photon mode. In a well-defined thermodynamical limit of large excitation numbers, the exact quantum solution describes a first-order phase transition in the regime where semiclassical theory predicts optical bistability. We study the behavior of the complex spectral gap associated with the Liouvillian superoperator of the corresponding master equation. We show that in this limit the Liouvillian gap vanishes exponentially and that the bimodality of the photon Wigner function disappears. The connection between the considered thermodynamical limit of large photon numbers for the single-mode cavity and the thermodynamical limit of many cavities for a driven-dissipative Bose-Hubbard system is discussed.
Interacting quantum spin models are remarkably useful for describing different types of physical, chemical, and biological systems. Significant understanding of their equilibrium properties has been achieved to date, especially for the case of spin models with short-range couplings. However, progress towards the development of a comparable understanding in long-range interacting models, in particular out-of-equilibrium, remains limited. In a recent work, we proposed a semiclassical numerical method to study spin models, the discrete truncated Wigner approximation (DTWA), and demonstrated its capability to correctly capture the dynamics of one- and two-point correlations in one dimensional (1D) systems. Here we go one step forward and use the DTWA method to study the dynamics of correlations in 2D systems with many spins and different types of long-range couplings, in regimes where other numerical methods are generally unreliable. We compute spatial and time-dependent correlations for spin-couplings that decay with distance as a power-law and determine the velocity at which correlations propagate through the system. Sharp changes in the behavior of those velocities are found as a function of the power-law decay exponent. Our predictions are relevant for a broad range of systems including solid state materials, atom-photon systems and ultracold gases of polar molecules, trapped ions, Rydberg, and magnetic atoms. We validate the DTWA predictions for small 2D systems and 1D systems, but ultimately, in the spirt of quantum simulation, experiments will be needed to confirm our predictions for large 2D systems.
We investigate the influence of a Markovian environment on the dynamics of interacting spinful fermionic atoms in a lattice. In order to explore the physical phenomena occurring at short times, we develop a method based on a slave-spin representation of fermions which is amenable to the investigation of the dynamics of dissipative systems. We apply this approach to two different dissipative couplings which can occur in current experiments: a coupling via the local density and a coupling via the local double occupancy. We complement our study based on this novel method with results obtained using the adiabatic elimination technique and with an exact study of a two-site model. We uncover that the decoherence is slowed down by increasing either the interaction strength or the dissipative coupling (the Zeno effect). We also find, for the coupling to the local double occupancy, that the final steady state can sustain single-particle coherence.
We study dissipative translationally invariant free-fermionic theories with quadratic Liouvillians. Using a Lie-algebraic approach, we solve the Lindblad equation and find the density matrix at all times for arbitrary time dependence of the Liouvillian. We then investigate the Liouvillian spectral properties and derive a generic criterion for the closure of the dissipative gap, which is believed to be linked with nonequilibrium dissipative phase transitions. We illustrate our findings with a few exotic examples. Particularly, we show the presence of gapless modes with a linear spectrum for fermions with long-range hopping, which might be related to nonunitary conformal field theories. The predicted effects can be probed in experiments with ultracold atomic and quantum-optical systems using currently available experimental facilities.
Over the last several years, a new generation of quantum simulations has greatly expanded our understanding of charge density wave phase transitions in Hamiltonians with coupling between local phonon modes and the on-site charge density. A quite different, and interesting, case is one in which the phonons live on the bonds, and hence modulate the electron hopping. This situation, described by the Su-Schrieffer-Heeger (SSH) Hamiltonian, has so far only been studied with quantum Monte Carlo in one dimension. Here we present results for the 2D SSH model, and show that a bond ordered wave (BOW) insulator is present in the ground state at half-filling, and argue that a critical value of the electron-phonon coupling is required for its onset, in contradistinction with the 1D case where BOW exists for any nonzero coupling. We determine the precise nature of the bond ordering pattern, which has hitherto been controversial, and the critical transition temperature, which is associated with a spontaneous breaking of ${cal Z}_4$ symmetry.