High Speed Continuous Variable Source-Independent Quantum Random Number Generation


Abstract in English

As a fundamental phenomenon in nature, randomness has a wide range of applications in the fields of science and engineering. Among different types of random number generators (RNG), quantum random number generator (QRNG) is a kind of promising RNG as it can provide provable true random numbers based on the inherent randomness of fundamental quantum processes. Nevertheless, the randomness from a QRNG can be diminished (or even destroyed) if the devices (especially the entropy source devices) are not perfect or ill-characterized. To eliminate the practical security loopholes from the source, source-independent QRNGs, which allow the source to have arbitrary and unknown dimensions, have been introduced and become one of the most important semi-device-independent QRNGs. Herein a method that enables ultra-fast unpredictable quantum random number generation from quadrature fluctuations of quantum optical field without any assumptions on the input states is proposed. Particularly, to estimate a lower bound on the extractable randomness that is independent from side information held by an eavesdropper, a new security analysis framework is established based on the extremality of Gaussian states, which can be easily extended to design and analyze new semi-device-independent continuous variable QRNG protocols. Moreover, the practical imperfections of the QRNG including the effects of excess noise, finite sampling range, finite resolution and asymmetric conjugate quadratures are taken into account and quantitatively analyzed. Finally, the proposed method is experimentally demonstrated to obtain high secure random number generation rates of 15.07 Gbits/s in off-line configuration and can potentially achieve 6 Gbits/s by real-time post-processing.

Download