Do you want to publish a course? Click here

Non-torsion non-algebraic classes in the Brown-Peterson tower

105   0   0.0 ( 0 )
 Added by Masaki Kameko
 Publication date 2017
  fields
and research's language is English
 Authors Masaki Kameko




Ask ChatGPT about the research

Generalizing the classical work of Atiyah and Hirzebruch on non-algebraic classes, recently Quick proved the existence of torsion non-algebraic elements in the Brown-Peterson tower. We construct non-torsion non-algebraic elements in the Brown-Peterson tower for the prime number 2.



rate research

Read More

In this paper, we construct stable Bott--Samelson classes in the projective limit of the algebraic cobordism rings of full flag varieties, upon an initial choice of a reduced word in a given dimension. Each stable Bott--Samelson class is represented by a bounded formal power series modulo symmetric functions in positive degree. We make some explicit computations for those power series in the case of infinitesimal cohomology. We also obtain a formula of the restriction of Bott--Samelson classes to smaller flag varieties.
We prove that there exists a pencil of Enriques surfaces defined over $mathbb{Q}$ with non-algebraic integral Hodge classes of non-torsion type. This gives the first example of a threefold with the trivial Chow group of zero-cycles on which the integral Hodge conjecture fails. As an application, we construct a fourfold which gives the negative answer to a classical question of Murre on the universality of the Abel-Jacobi maps in codimension three.
We show that the motivic spectrum representing algebraic $K$-theory is a localization of the suspension spectrum of $mathbb{P}^infty$, and similarly that the motivic spectrum representing periodic algebraic cobordism is a localization of the suspension spectrum of $BGL$. In particular, working over $mathbb{C}$ and passing to spaces of $mathbb{C}$-valued points, we obtain new proofs of the topologic
A method of constructing Cohomological Field Theories (CohFTs) with unit using minimal classes on the moduli spaces of curves is developed. As a simple consequence, CohFTs with unit are found which take values outside of the tautological cohomology of the moduli spaces of curves. A study of minimal classes in low genus is presented in the Appendix by D. Petersen.
74 - Tom Bachmann 2018
Let k be a field. Denote by Spc(k)_* the unstable, pointed motivic homotopy category and by Omega_Gm: Spc(k)_* to Spc(k)_* the Gm-loops functor. For a k-group G, denote by Gr_G the affine Grassmannian of G. If G is isotropic reductive, we provide a canonical motivic equivalence Omega_Gm G = Gr_G. If k is perfect, we use this to compute the motive M(Omega_Gm G) in DM(k, Z).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا