No Arabic abstract
Precise control of magnetic fields is a frequent challenge encountered in experiments with atomic quantum gases. Here we present a simple method for performing in-situ monitoring of magnetic fields that can readily be implemented in any quantum-gas apparatus in which a dedicated field-stabilization approach is not possible. The method, which works by sampling several Rabi resonances between magnetically field sensitive internal states that are not otherwise used in a given experiment, can be integrated with standard measurement sequences at arbitrary fields. For a condensate of $^{87}$Rb atoms, we demonstrate the reconstruction of Gauss-level bias fields with an accuracy of tens of microgauss and with millisecond time resolution. We test the performance of the method using measurements of slow resonant Rabi oscillations on a magnetic-field sensitive transition, and give an example for its use in experiments with state-selective optical potentials.
We present a complete recipe to extract the density-density correlations and the static structure factor of a two-dimensional (2D) atomic quantum gas from in situ imaging. Using images of non-interacting thermal gases, we characterize and remove the systematic contributions of imaging aberrations to the measured density-density correlations of atomic samples. We determine the static structure factor and report results on weakly interacting 2D Bose gases, as well as strongly interacting gases in a 2D optical lattice. In the strongly interacting regime, we observe a strong suppression of the static structure factor at long wavelengths.
Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a non-disordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Neel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.
I review recent studies that predict quantum liquid-crystalline orders in resonant atomic gases. As examples of such putative systems I will discuss an s-wave resonant imbalanced Fermi gas and a p-wave resonant Bose gas. In the former, the liquid-crystalline smectic, nematic and rich variety of other descendant states emerge from strongly quantum- and thermally- fluctuating Fulde-Ferrell and Larkin-Ovchinnikov states, driven by a competition between resonant pairing and Fermi-surface mismatch. In the latter, at intermediate detuning the p-wave resonant interaction generically drives Bose-condensation at a finite momentum, set by a competition between atomic kinetic energy and atom-molecule hybridization. Because of the underlying rotationally-invariant environment of the atomic gas trapped isotropically, the putative striped superfluid is a realization of a quantum superfluid smectic, that can melt into a variety of interesting phases, such as a quantum nematic. I will discuss the corresponding rich phase diagrams and transitions, as well the low-energy properties of the phases and fractional topological defects generic to striped superfluids and their fluctuation-driven descendants.
Time periodic forcing in the form of coherent radiation is a standard tool for the coherent manipulation of small quantum systems like single atoms. In the last years, periodic driving has more and more also been considered as a means for the coherent control of many-body systems. In particular, experiments with ultracold quantum gases in optical lattices subjected to periodic driving in the lower kilohertz regime have attracted a lot of attention. Milestones include the observation of dynamic localization, the dynamic control of the quantum phase transition between a bosonic superfluid and a Mott insulator, as well as the dynamic creation of strong artificial magnetic fields and topological band structures. This article reviews these recent experiments and their theoretical description. Moreover, fundamental properties of periodically driven many-body systems are discussed within the framework of Floquet theory, including heating, relaxation dynamics, anomalous topological edge states, and the response to slow parameter variations.
Experiments on trapped quantum gases can probe challenging regimes of quantum many-body dynamics, where strong interactions or non-equilibrium states prevent exact solutions. Here we present an exact result which holds even when no exact solutions can be found: a class of spacetime mappings of different experiments onto each other, as long as the gas particles interact via two-body potentials which possess a scaling property that most real interactions do possess. Since our result is an identity relating second-quantized field operators in the Heisenberg picture of quantum mechanics, it is otherwise general; it applies to arbitrary measurements on any mixtures of Bose or Fermi gases, in arbitrary initial states. Practical applications of this mapping include perfect simulation of non-trivial experiments with other experiments which may be easier to perform.