We propose a dissipative method for the preparation of many-body steady entangled states in spin and fermionic chains. The scheme is accomplished by means of an engineered set of Lindbladians acting over the eigenmodes of the system, whose spectrum is assumed to be resolvable. We apply this idea to prepare a particular entangled state of a spin chain described by the XY model, emphasizing its generality and experimental feasibility. Our results show that our proposal is capable of achieving high fidelities and purities for a given target state even when dephasing and thermal dissipative processes are taken into account. Moreover, the method exhibits a remarkable robustness against fluctuations in the model parameters.