The streaming instability is often invoked as solution to the fragmentation and drift barriers in planetesimal formation, catalyzing the aggregation of dust on kyr timescales to grow km-sized cores. However there remains a lack of consensus on the physical mechanism(s) responsible for initiating it. One potential avenue is disc photoevaporation, wherein the preferential removal of relatively dust-free gas increases the disc metallicity. Late in the disc lifetime, photoevaporation dominates viscous accretion, creating a gradient in the depleted gas surface density near the location of the gap. This induces a local pressure maximum that collects drifting dust particles, which may then become susceptible to the streaming instability. Using a one-dimensional viscous evolution model of a disc subject to internal X-ray photoevaporation, we explore the efficacy of this process to build planetestimals. Over a range of parameters we find that the amount of dust mass converted into planetesimals is often < 1 M_Earth and at most a few M_Earth spread across tens of AU. We conclude that photoevaporation may at best be relevant for the formation of debris discs, rather than a common mechanism for the formation of planetary cores. Our results are in contrast to a recent, similar investigation that considered an FUV-driven photoevaporation model and reported the formation of tens of M_Earth at large (> 100 AU) disc radii. The discrepancies are primarily a consequence of the different photoevaporation profiles assumed. Until observations more tightly constrain photoevaporation models, the relevance of this process to the formation of planets remains uncertain.