Do you want to publish a course? Click here

Narrow head-tail radio galaxies at very high resolution

87   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. Narrow-angle tailed (NAT) sources in clusters of galaxies can show on the large scale very narrow tails that are unresolved even at arcsecond resolution. These sources could therefore be classified as one-sided jets. The aim of this paper is to gain new insight into the structure of these sources, and establish whether they are genuine one-sided objects, or if they are two-sided sources. Methods. We observed a sample of apparently one-sided NAT sources at subarcsecond resolution to obtain detailed information on their structure in the nuclear regions of radio galaxies. Results. Most radio galaxies are found to show two-sided jets with sharp bends, and therefore the sources are similar to the more classical NATs, which are affected by strong projection effects.



rate research

Read More

We present results from a study of seven large known head-tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of the multiple bends an d wiggles in several head-tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases a long the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ~100 Myr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.
The peculiar morphology of Head-Tail (HT) radio galaxies indicates strong interactions between the radio jets and their intra-cluster medium. We systematically search for HT radio galaxies from LOFAR Two-metre Sky Survey first data release (LoTSS DR1) at 144 MHz frequency. We present here a catalogue of fifty new HT radio sources, among them, five are Narrow-Angle Tailed sources (NATs) and forty-five are Wide Angle Tailed sources (WATs). NATs are characterized by tails bent in a narrow V like shape with less than a ninety-degree opening angle. For WAT radio galaxies, the opening angle between jets is more than ninety degrees which exhibit wide C like morphologies. We found that thirty-one out of fifty HT sources are associated with known galaxy clusters. The various physical properties and statistical studies of these HT sources are also presented in this paper.
In order to study the ram-pressure interaction between radio galaxies and the intracluster medium, we analyse a sample of 208 highly-bent narrow-angle tail radio sources (NATs) in clusters, detected by the LOFAR Two-metre Sky Survey. For NATs within $7,R_{500}$ of the cluster centre, we find that their tails are distributed anisotropically with a strong tendency to be bent radially away from the cluster, which suggests that they are predominantly on radially inbound orbits. Within $0.5,R_{500}$, we also observe an excess of NATs with their jets bent towards the cluster core, indicating that these outbound sources fade away soon after passing pericentre. For the subset of NATs with spectroscopic redshifts, we find the radial bias in the jet angles exists even out to $10,R_{500}$, far beyond the virial radius. The presence of NATs at such large radii implies that significant deceleration of the accompanying inflowing intergalactic medium must be occurring there to create the ram pressure that bends the jets, and potentially even triggers the radio source.
We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz (18cm) with milli-arcsecond resolution. This is the first systematic very long baseline interferometry (VLBI) study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of >~5x10^6 K and contain radio cores with high brightness temperatures of >6x10^7 K, indicating a nonthermal process driven by jet-producing central engines as is observed in radio-loud NLS1s and other active galactic nucleus (AGN) classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions (<~300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of <~10^7 M_sun.
Recently, Rakshit et al. (2018) reported the discovery of SDSS J103024.95$+$551622.7, a radio-loud narrow-line Seyfert 1 galaxy having a $sim 100$ kpc scale double-lobed radio structure. Here we analyse archival radio interferometric imaging data taken with the Very Large Array (VLA) at 5 GHz, and with the Very Long Baseline Array (VLBA) at 4.3 and 7.6 GHz. Two hotspots and a compact core are detected with the VLA at arcsec scale, while a single milliarcsec-scale compact radio core is seen with the highest resolution VLBA observations. The Fermi Large Area Telescope did not detect $gamma$-ray emission at the position of this source. In the mid-infrared, the Wide-field Infrared Survey Explorer satellite light curve, covering more than 7 years and including the most recent data points, hints on flux density variability at 3.4 $mu$m. Our findings support the notion that this source is a young version of Fanaroff-Riley type II radio galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا