Number of Sylow subgroups in finite groups


Abstract in English

Denote by $ u_p(G)$ the number of Sylow $p$-subgroups of $G$. It is not difficult to see that $ u_p(H)leq u_p(G)$ for $Hleq G$, however $ u_p(H)$ does not divide $ u_p(G)$ in general. In this paper we reduce the question whether $ u_p(H)$ divides $ u_p(G)$ for every $Hleq G$ to almost simple groups. This result substantially generalizes the previous result by G. Navarro and also provides an alternative proof for the Navarro theorem.

Download