Do you want to publish a course? Click here

Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity

62   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this Letter, we demonstrate the generation of multimode entangled states of propagating microwaves. The entangled states are generated by parametrically pumping a multimode superconducting cavity. By combining different pump frequencies, applied simultaneously to the device, we can produce different entanglement structures in a programable fashion. The Gaussian output states are fully characterized by measuring the full covariance matrices of the modes. The covariance matrices are absolutely calibrated using an in situ microwave calibration source, a shot noise tunnel junction. Applying a variety of entanglement measures, we demonstrate both full inseparability and genuine tripartite entanglement of the states. Our method is easily extensible to more modes.



rate research

Read More

We present a new optomechanical device where the motion of a micromechanical membrane couples to a microwave resonance of a three-dimensional superconducting cavity. With this architecture, we realize ultrastrong parametric coupling, where the coupling rate not only exceeds the dissipation rates in the system but also rivals the mechanical frequency itself. In this regime, the optomechanical interaction induces a frequency splitting between the hybridized normal modes that reaches 88% of the bare mechanical frequency, limited by the fundamental parametric instability. The coupling also exceeds the mechanical thermal decoherence rate, enabling new applications in ultrafast quantum state transfer and entanglement generation.
We develop a theory for non-degenerate parametric resonance in a tunable superconducting cavity. We focus on nonlinear effects that are caused by nonlinear Josephson elements connected to the cavity. We analyze parametric amplification in a strong nonlinear regime at the parametric instability threshold, and calculate maximum gain values. Above the threshold, in the parametric oscillator regime the linear cavity response diverges at the oscillator frequency at all pump strengths. We show that this divergence is related to the continuous degeneracy of the free oscillator state with respect to the phase. Applying on-resonance input lifts the degeneracy and removes the divergence. We also investigate the quantum noise squeezing. It is shown that in the strong amplification regime the noise undergoes four-mode squeezing, and that in this regime the output signal to noise ratio can significantly exceed the input value. We also analyze the intermode frequency conversion and identify parameters at which full conversion is achieved.
A high-quality, compact, and narrow-bandwidth entangled photon source (EPS) is indispensable for realization of many quantum communication protocols. Usually, a free space cavity containing a nonlinear crystal is used to generate a narrow bandwidth EPS through spontaneous parametric down-conversion (SPDC). One major drawback is that this occupies a large space and requires complex optical and electrical control systems. Here we present a simple and compact method to generate a single-longitudinal-mode time-energy EPS via type II SPDC in a submillimeter Fabry-Perot cavity. We characterize the quality of the EPS by measuring the coincidence to accidental coincidence ratio, the two-photon time cross-correlation function and the two-photon interference fringes. All measured results clearly demonstrate that the developed source is of high quality when compared with EPSs generated using other configurations. We believe this source is very promising for applications in the quantum communication field.
123 - D. Lee , M. Underwood , D. Mason 2014
Cavity optomechanics offers powerful methods for controlling optical fields and mechanical motion. A number of proposals have predicted that this control can be extended considerably in devices where multiple cavity modes couple to each other via the motion of a single mechanical oscillator. Here we study the dynamical properties of such a multimode optomechanical device, in which the coupling between cavity modes results from mechanically-induced avoided crossings in the cavitys spectrum. Near the avoided crossings we find that the optical spring shows distinct features that arise from the interaction between cavity modes. Precisely at an avoided crossing, we show that the particular form of the optical spring provides a classical analog of a quantum-nondemolition measurement of the intracavity photon number. The mechanical oscillators Brownian motion, an important source of noise in these measurements, is minimized by operating the device at cryogenic temperature (500 mK).
Non-Gaussian continuous variable states play a central role both in the foundations of quantum theory and for emergent quantum technologies. In particular, cat states, i.e., two-component macroscopic quantum superpositions, embody quantum coherence in an accessible way and can be harnessed for fundamental tests and quantum information tasks alike. Degenerate optical parametric oscillators can naturally produce single-mode cat states and thus represent a promising platform for their realization and harnessing. We show that a dissipative coupling between degenerate optical parametric oscillators extends this to two-mode entangled cat states, i.e., two-mode entangled cat states are naturally produced under such dissipative coupling. While overcoming single-photon loss still represents a major challenge towards the realization of sufficiently pure single-mode cat states in degenerate optical parametric oscillators, we show that the generation of two-mode entangled cat states under such dissipative coupling can then be achieved without additional hurdles. We numerically explore the parameter regime for the successful generation of transient two-mode entangled cat states in two dissipatively coupled degenerate optical parametric oscillators. To certify the cat-state entanglement, we employ a tailored, variance-based entanglement criterion, which can robustly detect cat-state entanglement under realistic conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا