No Arabic abstract
We focus on empirically measure the p-factor of a homogeneous sample of 29 LMC and 10 SMC Cepheids for which an accurate average LMC/SMC distance were estimated from eclipsing binary systems. We used the SPIPS algorithm, which is an implementation of the BW method. As opposed to other conventional use, SPIPS combines all observables, i.e. radial velocities, multi-band photometry and interferometry into a consistent physical modeling to estimate the parameters of the stars. The large number and their redundancy insure its robustness and improves the statistical precision. We successfully estimated the p-factor of several MC Cepheids. Combined with our previous Galactic results, we find the following P-p relation: -0.08(log P-1.18)+1.24. We find no evidence of a metallicity dependent p-factor. We also derive a new calibration of the P-R relation, logR=0.684(log P-0.517)+1.489, with an intrinsic dispersion of 0.020. We detect an IR excess for all stars at 3.6 and 4.5um, which might be the signature of circumstellar dust. We measure a mean offset of $Delta m_{3.6}=0.057$mag and $Delta m_{4.5}=0.065$mag. We provide a new P-p relation based on a multi-wavelengths fit, and can be used for the distance scale calibration from the BW method. The dispersion is due to the MCs width we took into account because individual Cepheids distances are unknown. The new P-R relation has a small intrinsic dispersion, i.e. 4.5% in radius. Such precision will allow us to accurately apply the BW method to nearby galaxies. Finally, the IR excesses we detect raise again the issue on using mid-IR wavelengths to derive P-L relation and calibrate the $H_0$. These IR excesses might be the signature of circumstellar dust, and are never taken into account when applying the BW method at those wavelengths. Our measured offsets may give an average bias of 2.8% on the distances derived through mid-IR P-L relations.
The projection factor (p-factor) is an essential component of the classical Baade-Wesselink (BW) technique, that is commonly used to determine the distances to pulsating stars. It is a multiplicative parameter used to convert radial velocities into pulsational velocities. As the BW distances are linearly proportional to the p-factor, its accurate calibration for Cepheids is of critical importance for the reliability of their distance scale. We focus on the observational determination of the p-factor of the long-period Cepheid RS Pup (P = 41.5 days). This star is particularly important as this is one of the brightest Cepheids in the Galaxy and an analog of the Cepheids used to determine extragalactic distances. An accurate distance of 1910 +/- 80 pc (+/- 4.2%) has recently been determined for RS Pup using the light echoes propagating in its circumstellar nebula. We combine this distance with new VLTI/PIONIER interferometric angular diameters, photometry and radial velocities to derive the p-factor of RS Pup using the code Spectro-Photo-Interferometry of Pulsating Stars (SPIPS). We obtain p = 1.250 +/- 0.064 (+/-5.1%), defined for cross-correlation radial velocities. Together with measurements from the literature, the p-factor of RS Pup confirms the good agreement of a constant p = 1.293 +/- 0.039 (+/-3.0%) model with the observations. We conclude that the p-factor of Cepheids is constant or mildly variable over a broad range of periods (3.7 to 41.5 days).
The distance to pulsating stars is classically estimated using the parallax-of-pulsation (PoP) method, which combines spectroscopic radial velocity measurements and angular diameter estimates to derive the distance of the star. An important application of this method is the determination of Cepheid distances, in view of the calibration of their distance scale. However, the conversion of radial to pulsational velocities in the PoP method relies on a poorly calibrated parameter, the projection factor (p-factor). We aim to measure empirically the value of the p-factors of a homogeneous sample of nine Galactic Cepheids for which trigonometric parallaxes were measured with the Hubble Space Telescope Fine Guidance Sensor. We use the SPIPS algorithm, a robust implementation of the PoP method that combines photometry, interferometry, and radial velocity measurements in a global modeling of the pulsation. We obtained new interferometric angular diameters using the PIONIER instrument at the Very Large Telescope Interferometer, completed by data from the literature. Using the known distance as an input, we derive the value of the p-factor and study its dependence with the pulsation period. We find the following p-factors: 1.20 $pm$ 0.12 for RT Aur, 1.48 $pm$ 0.18 for T Vul, 1.14 $pm$ 0.10 for FF Aql, 1.31 $pm$ 0.19 for Y Sgr, 1.39 $pm$ 0.09 for X Sgr, 1.35 $pm$ 0.13 for W Sgr, 1.36 $pm$ 0.08 for $beta$ Dor, 1.41 $pm$ 0.10 for $zeta$ Gem, and 1.23 $pm$ 0.12 for $ell$ Car. These values are consistently close to p = 1.324 $pm$ 0.024. We observe some dispersion around this average value, but the observed distribution is statistically consistent with a constant value of the p-factor as a function of the pulsation period. The error budget of our determination of the p-factor values is presently dominated by the uncertainty on the parallax, a limitation that will soon be waived by Gaia.
The distances of pulsating stars, in particular Cepheids, are commonly measured using the parallax of pulsation technique. The differe
The projection factor p is the key quantity used in the Baade-Wesselink (BW) method for distance determination; it converts radial velocities into pulsation velocities. Several methods are used to determine p, such as geometrical and hydrodynamical models or the inverse BW approach when the distance is known. We analyze new HARPS-N spectra of delta Cep to measure its cycle-averaged atmospheric velocity gradient in order to better constrain the projection factor. We first apply the inverse BW method to derive p directly from observations. The projection factor can be divided into three subconcepts: (1) a geometrical effect (p0); (2) the velocity gradient within the atmosphere (fgrad); and (3) the relative motion of the optical pulsating photosphere with respect to the corresponding mass elements (fo-g). We then measure the fgrad value of delta Cep for the first time. When the HARPS-N mean cross-correlated line-profiles are fitted with a Gaussian profile, the projection factor is pcc-g = 1.239 +/- 0.034(stat) +/- 0.023(syst). When we consider the different amplitudes of the radial velocity curves that are associated with 17 selected spectral lines, we measure projection factors ranging from 1.273 to 1.329. We find a relation between fgrad and the line depth measured when the Cepheid is at minimum radius. This relation is consistent with that obtained from our best hydrodynamical model of delta Cep and with our projection factor decomposition. Using the observational values of p and fgrad found for the 17 spectral lines, we derive a semi-theoretical value of fo-g. We alternatively obtain fo-g = 0.975+/-0.002 or 1.006+/-0.002 assuming models using radiative transfer in plane-parallel or spherically symmetric geometries, respectively. The new HARPS-N observations of delta Cep are consistent with our decomposition of the projection factor.
Classical Cepheids (DCEPs) are the most important primary indicators for the extragalactic distance scale. Establishing the dependence on metallicity of their period--luminosity and period--Wesenheit (PL/PW) relations has deep consequences on the estimate of the Hubble constant (H$_0$). We aim at investigating the dependence on metal abundance ([Fe/H]) of the PL/PW relations for Galactic DCEPs. We combined proprietary and literature photometric and spectroscopic data, gathering a total sample of 413 Galactic DCEPs (372 fundamental mode -- DCEP_F and 41 first overtone -- DCEP_1O) and constructed new metallicity-dependent PL/PW relations in the near infra-red (NIR) adopting the Astrometric Based Luminosity. We find indications that the slopes of the PL$(K_S)$ and PW$(J,K_S)$ relations for Galactic DCEPs might depend on metallicity when compared to the Large Magellanic Cloud relationships. Therefore, we have used a generalized form of the PL/PW relations to simultaneously take into account the metallicity dependence of the slope and intercept of these relations. We calculated PL/PW relations which, for the first time, explicitly include a metallicity dependence of both the slope and intercept terms. Although the insufficient quality of the available data makes our results not yet conclusive, they are relevant from a methodological point of view. The new relations are linked to the geometric measurement of the distance to the Large Magellanic Cloud and allowed us to estimate a {it Gaia} DR2 parallax zero point offset $Delta varpi$=0.0615$pm$0.004 mas from the dataset of DCEPs used in this work.