Do you want to publish a course? Click here

Neutrinos in Large Extra Dimensions and Short-Baseline $ u_e$ Appearance

101   0   0.0 ( 0 )
 Added by Li Ying-Ying
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We show that, in the presence of bulk masses, sterile neutrinos propagating in large extra dimensions (LED) can induce electron-neutrino appearance effects. This is in contrast to what happens in the standard LED scenario and hence LED models with explicit bulk masses have the potential to address the MiniBooNE and LSND appearance results, as well as the reactor and Gallium anomalies. A special feature in our scenario is that the mixing of the first KK modes to active neutrinos can be suppressed, making the contribution of heavier sterile neutrinos to oscillations relatively more important. We study the implications of this neutrino mass generation mechanism for current and future neutrino oscillation experiments, and show that the Short-Baseline Neutrino Program at Fermilab will be able to efficiently probe such a scenario. In addition, this framework leads to massive Dirac neutrinos and thus precludes any signal in neutrinoless double beta decay experiments.



rate research

Read More

Neutrino oscillations successfully explain the flavor transitions observed in neutrinos produced in natural sources like the center of the sun and the earth atmosphere, and also from man-made sources like reactors and accelerators. These oscillations are driven by two mass-squared differences, solar and atmospheric, at the sub-eV scale. However, longstanding anomalies at short-baselines might imply the existence of new oscillation frequencies at the eV-scale and the possibility of this sterile state(s) to mix with the three active neutrinos. One of the many future neutrino programs that are expected to provide a final word on this issue is the Short-Baseline Neutrino Program (SBN) at FERMILAB. In this letter, we consider a specific model of Large Extra Dimensions (LED) which provides interesting signatures of oscillation of extra sterile states. We started re-creating sensitivity analyses for sterile neutrinos in the 3+1 scenario, previously done by the SBN collaboration, by simulating neutrino events in the three SBN detectors from both muon neutrino disappearance and electron neutrino appearance. Then, we implemented neutrino oscillations as predicted in the LED model and also we have performed sensitivity analysis to the LED parameters. Finally, we studied the SBN power of discriminating between the two models, the 3+1 and the LED. We have found that SBN is sensitive to the oscillations predicted in the LED model and have the potential to constrain the LED parameter space better than any other oscillation experiment, for $m_{1}^D<0.1,text{eV}$. In case SBN observes a departure from the three active neutrino framework, it also has the power of discriminating between sterile oscillations predicted in the 3+1 framework and the LED ones.
We consider a model where right-handed neutrinos propagate in a large compactified extra dimension, engendering Kaluza-Klein (KK) modes, while the standard model particles are restricted to the usual 4-dimensional brane. A mass term mixes the KK modes with the standard left-handed neutrinos, opening the possibility of change the 3 generation mixing pattern. We derive bounds on the maximum size of the extra dimension from neutrino oscillation experiments. We show that this model provides a possible explanation for the deficit of nu_e in Ga solar neutrino calibration experiments and of the anti-nu_e in short baseline reactor experiments.
149 - Chao Cao , Yi-Xin Chen 2008
The holographic principle asserts that the entropy of a system cannot exceed its boundary area in Planck units. However, conventional quantum field theory fails to describe such systems. In this Letter, we assume the existence of large $n$ extra dimensions and propose a relationship between UV and IR cutoffs in this case. We find that if $n=2$, this effective field theory could be a good description of holographic systems. If these extra dimensions are detected in future experiments, it will help to prove the validity of the holographic principle. We also discuss implications for the cosmological constant problem.
We study the capability of the international linear collider (ILC) to probe extra dimensions via the seesaw mechanism. In the scenario we study, heavy Kaluza-Klein neutrinos generate tiny neutrino masses and, at the same time, have sizable couplings to the standard-model particles. Consequently, a Kaluza-Klein tower of heavy neutrinos (N) can be produced and studied at the ILC through the process: e+e- -> vN followed by N -> Wl decay. We show that the single lepton plus two-jets final states with large missing energy from this signal process will provide a good opportunity to measure the masses and cross sections of Kaluza-Klein neutrinos up to the third level. Furthermore, the neutrino oscillation parameters can be extracted from the flavor dependence of the lowest-mode signals, which give us information about the origin of low-energy neutrino masses.
148 - K. Abe , J. Adam , H. Aihara 2014
The T2K experiment has performed a search for $ u_e$ disappearance due to sterile neutrinos using $5.9 times 10^{20}$ protons on target for a baseline of $280 m$ in a neutrino beam peaked at about $500 MeV$. A sample of u_e CC interactions in the off-axis near detector has been selected with a purity of 63% and an efficiency of 26%. The p-value for the null hypothesis is 0.085 and the excluded region at 95% CL is approximately $sin^2 2 theta_{ee} > 0.3$ for $Delta m^2_{eff} > 7 eV^2 / c^4$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا