No Arabic abstract
We present an optical and near-infrared (hereafter NIR) polarimetric study of a comet C/2013 US10 (Catalina) observed on UT 2015 December 17-18 at phase angles of $alpha$=52.1 deg - 53.1 deg. Additionally, we obtained an optical spectrum and multi-band images to examine the influence of gas emission. We find that the observed optical signals are significantly influenced by gas emission, that is, the gas-to-total intensity ratio varies from 5 to 30 % in the $R_{rm C}$ and 3 to 18 % in the $I_{rm C}$ bands, depending on the position in the coma. We derive the `gas-free dust polarization degrees of 13.8$pm$1.0 % in the $R_{rm C}$ and 12.5$pm$1.1 % in the $I_{rm C}$ bands and a gray polarimetric color, i.e., -8.7$pm$9.9 % $mu mathrm{m}$$^{-1}$ in optical and 1.6$pm$0.9 % $mu mathrm{m}$$^{-1}$ in NIR. The increments of polarization obtained from the gas correction show that the polarimetric properties of the dust in this low-polarization comet are not different from those in high-polarization comets. In this process, the cometocentric distance dependence of polarization has disappeared. We also find that the $R_{rm C}$-band polarization degree of the southeast dust tail, which consists of large dust particles (100 $mu mathrm{m}$ - 1 mm), is similar to that in the outer coma where small and large ones are mixed. Our study confirms that the dichotomy of cometary polarization does not result from the difference of dust properties, but from depolarizing gas contamination. This conclusion can provide a strong support for similarity in origin of comets.
We present IRTF/SpeX and NEOWISE observations of the dynamically new comet C/2013 US$_{10}$ (Catalina), hereafter US10, from 5.8 au inbound, to near perihelion at 1.3 au, and back to 5.0 au outbound. We detect water ice in the coma of US10, assess and monitor the physical properties of the ice as insolation varies with heliocentric distance, and investigate the relationship between water ice and CO$_{2}$. This set of measurements is unique in orbital coverage and can be used to infer the physical evolution of the ice and, potentially, the nucleus composition. We report (1) nearly identical near-infrared spectroscopic measurements of the coma at $-$5.8 au, $-$5.0 au, +3.9 au (where $<$0 au indicates pre-perihelion epochs), all presenting evidence of water-ice grains, (2) a dust-dominated coma at 1.3 au and 2.3 au and, (3) an increasing CO$_{2}$/$Afrho$ ratio from $-$4.9 au to 1.8 au. We propose that sublimation of the hyper-volatile CO$_{2}$ is responsible for dragging water-ice grains into the coma throughout the orbit. Once in the coma, the observability of the water-ice grains is controlled by the ice grain sublimation lifetime, which seems to require some small dust contaminant (i.e., non-pure ice grains). At |R$_{h}$|>=3.9 au, the ice grains are long-lived and may be unchanged since leaving the comet nucleus. We find the nucleus of comet US10 is made of, among other components, $sim$1-micron water-ice grains containing up to 1% refractory materials.
We report observations of color in the inner coma of Comet C/2013 UQ4 (Catalina) with the broadband B and R filters. We find significant temporal variations of the color slope, ranging from -12.67 $pm$ 8.16 % per 0.1~$mu$m up to $35.09 pm 11.7$ % per 0.1~$mu$m.It is significant that the comet changes color from red to blue over only a two-day period. Such dispersion cannot be characterized with an average color slope. We also observe Comet C/2013 UQ4 (Catalina) in infrared using Spitzer and find no significant CO/CO$_{2}$ gaseous species in its coma. Therefore, we classify Comet C/2013 UQ4 (Catalina) as a dust-rich comet and attribute the measured color slope to its dust. We analyze the color slope using the model of agglomerated debris particles and conclude that the C/2013 UQ4 coma was chemically heterogeneous, consisting of at least two components. The first component producing the bluest color is consistent with Mg-rich silicates. There are three different options for the second component producing the reddest color. This color is consistent with either Mg-Fe silicates, kerogen type II, or organic matter processed with a low dose of UV radiation.
We conducted an optical and near-infrared polarimetric observation of the highly dormant Jupiter-Family Comet, 209P/LINEAR. Because of its low activity, we were able to determine the linear polarization degrees of the coma dust particles and nucleus independently, that is $P_n$=30.3$^{+1.3}_{-0.9}$% at $alpha$=92.2$^circ$ and $P_n$=31.0$^{+1.0}_{-0.7}$% at $alpha$=99.5$^circ$ for the nucleus, and $P_c$=28.8$^{+0.4}_{-0.4}$% at $alpha$=92.2$^circ$ and 29.6$^{+0.3}_{-0.3}$% at $alpha$=99.5$^circ$ for the coma. We detected no significant variation in $P$ at the phase angle coverage of 92.2$^circ$-99.5$^circ$, which may imply that the obtained polarization degrees are nearly at maximum in the phase-polarization curves. By fitting with an empirical function, we obtained the maximum values of linear polarization degrees $P_mathrm{max}$=30.8% for the nucleus and $P_mathrm{max}$=29.6% for the dust coma. The $P_mathrm{max}$ of the dust coma is consistent with those of dust-rich comets. The low geometric albedo of $P_v$=0.05 was derived from the slope-albedo relationship and was associated with high $P_mathrm{max}$. We examined $P_mathrm{max}$-albedo relations between asteroids and 209P, and found that the so-called Umov law seems to be applicable on this cometary surface.
Comet C/2013 US10 (Catalina) was an dynamically new Oort cloud comet whose apparition presented a favorable geometry for observations near close Earth approach (~0.93au) at heliocentric distances ~2au when insolation and sublimation of volatiles drive maximum activity. Here we present mid-infrared spectrophotometric observations at two temporal epochs from NASAs Stratospheric Observatory for Infrared Astronomy and the NASA Infrared Telescope Facility. The grain composition is dominated by dark dust grains (modeled as amorphous carbon) with a silicate-to-carbon ratio ~0.9, little of crystalline stoichiometry (no distinct 11.2um feature attributed to Mg-rich crystalline olivine), the submicron grain size distribution peaking at ~0.6um. The 10um silicate feature was weak, ~12.8% above the local continuum, and the bolometric grain albedo was low (~14%). Comet Catalina is a carbon-rich object. This material, which is well-represented by the optical constants of amorphous carbon is similar to the material that darkens and reddens the surface of comet 67P/Churyumov-Gerasimenko. We argue this material is endemic the nuclei of comets, synthesizing results from the study of Stardust samples, interplanetary dust particle investigations and micrometeoritic analyses. The atomic carbon-to-silicate ratio of comet Catalina and other comets joins a growing body of evidence suggesting the existence of a C/Si gradient in the primitive solar system.
We present the results of photometry, linear spectropolarimetry, and imaging circular polarimetry ofcomet C/2009 P1 (Garradd) performed at the 6-m telescope BTA of the Special Astrophysical Observatory(Russia) equipped by the multi-mode focal reducer SCORPIO-2. The comet was observed at two epochspost-perihelion: on February 2-14, 2012 at r=1.6 au and {alpha}=36 {deg}; and on April 14-21, 2012 at r=2.2 au and {alpha}=27 deg. The spatial maps of the relative intensity and circular polarization as well as the spectral distribution of linear polarization are presented. There were two features (dust and gas tails) orientedin the solar and antisolar directions on February 2 and 14 that allowed us to determine rotation periodof the nucleus as 11.1 hours. We detected emissions of C2 , C3 , CN, CH, NH2 molecules as well as CO+ and H2O+ ions, along with a high level of the dust continuum. On February 2, the degree of linear polarization in the continuum, within the wavelength range of 0.67-0.68 {mu}m, was about 5% in the near-nucleus region up to near 6000 km and decreased to about 3% at near 40,000 km. The left-handed (negative) circular polarization at the level approximately from -0.06% to -0.4% was observed at the distances up to 3*10^4 km from the nucleus on February 14 and April 21, respectively.