No Arabic abstract
The control of solute fluxes through either microscopic phoresis or hydrodynamic advection is a fundamental way to transport molecules, which are ubiquitously present in nature and technology. We study the transport of large solute such as DNA driven by a time-dependent thermal field in a polymer solution. Heat propagation of a single heat spot moving back and forth gives rise to the molecular focusing of DNA with frequency-tunable control. We developed a theoretical model, where heat conduction, viscoelastic expansion of walls, and the viscosity gradient of a smaller solute are coupled, and that can explain the underlying hydrodynamic focusing and its interplay with phoretic transports. This cross effect may allow one to design a unique miniaturized pump in microfluidics.
This article explores the governing role of the internal hydrodynamics and advective transport within sessile colloidal droplets on the self assembly of nanostructures to form floral patterns. Water acetone binary fluid and Bi2O3 nanoflakes based complex fluids are experimented with. Microliter sessile droplets are allowed to vaporize and the dry out patterns are examined using scanning electron microscopy. The presence of distributed self assembled rose like structures is observed. The population density, structure and shape of the floral structures are noted to be dependent on the binary fluid composition and nanomaterial concentration. Detailed microscopic particle image velocimetry analysis is undertaken to qualitatively and quantitatively describe the solutal Marangoni advection within the evaporating droplets. It has been shown that the kinetics, regime and location of the internal advection are responsible factors towards the hydrodynamics influenced clustering, aggregation and self-assembly of the nanoflakes. In addition, the size of the nanostructures and the complex fluids.
Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area.
Using high-speed photography, we investigate two distinct regimes of the impact dynamics of granular jets with non-circular cross-sections. In the steady-state regime, we observe the formation of thin granular sheets with anisotropic shapes and show that the degree of anisotropy increases with the aspect ratio of the jets cross-section. Our results illustrate the liquid-like behavior of granular materials during impact and demonstrate that a collective hydrodynamic flow emerges from strongly interacting discrete particles. We discuss the analogy between our experiments and those from the Relativistic Heavy Ion Collider (RHIC), where similar anisotropic ejecta from a quark-gluon plasma have been observed in heavy-ion impact.
We report measurements of resonant thermal capillary oscillations of a hemispherical liquid gas interface obtained using a half bubble deposited on a solid substrate. The thermal motion of the hemispherical interface is investigated using an atomic force microscope cantilever that probes the amplitude of vibrations of this interface versus frequency. The spectrum of such nanoscale thermal oscillations of the bubble surface presents several resonance peaks and reveals that the contact line of the hemispherical bubble is pinned on the substrate. The analysis of these peaks allows to measure the surface viscosity of the bubble interface. Minute amounts of impurities are responsible for altering the rheology of the pure water surface.
Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical pre-factor of order unity, this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical pre-factor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.