Decade long RXTE monitoring observations of Be/X-ray binary pulsar EXO 2030+375


Abstract in English

We present a comprehensive timing and spectral studies of Be/X-ray binary pulsar EXO 2030+375 using extensive Rossi X-ray Timing Explorer observations from 1995 till 2011, covering numerous Type I and 2006 Type II outbursts. Pulse profiles of the pulsar were found to be strongly luminosity dependent. At low luminosity, the pulse profile consisted of a main peak and a minor peak that evolved into a broad structure at high luminosity with a significant phase shift. A narrow and sharp absorption dip, also dependent on energy and luminosity, was detected in the pulse profile. Comparison of pulse profiles showed that the features at a particular luminosity are independent of type of X-ray outbursts. This indicates that the emission geometry is solely a function of mass accretion rate. The broadband energy spectrum was described with a partial covering high energy cutoff model as well as a physical model based on thermal and bulk Comptonization in accretion column. We did not find any signature of cyclotron resonance scattering feature in the spectra obtained from all the observations. A detailed analysis of spectral parameters showed that, depending on source luminosity, the power-law photon index was distributed in three distinct regions. It suggests the phases of spectral transition from sub-critical to super-critical regimes in the pulsar as proposed theoretically. A region with constant photon index was also observed in ~(2-4) x 10^37 erg/s range, indicating critical luminosity regime in EXO 2030+375.

Download