Do you want to publish a course? Click here

Tuning up or down the critical thickness in LaAlO3/SrTiO3 through in situ deposition of metal overlayers

74   0   0.0 ( 0 )
 Added by Manuel Bibes
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quasi 2D electron system (q2DES) that forms at the interface between LaAlO3 and SrTiO3 has attracted much attention from the oxide electronics community. One of its hallmark features is the existence of a critical LaAlO3 thickness of 4 unit-cells (uc) for interfacial conductivity to emerge. In this paper, the chemical, electronic, and transport properties of LaAlO3/SrTiO3 samples capped with different metals grown in a system combining pulsed laser deposition, sputtering, and in situ X-ray photoemission spectroscopy are investigated. The results show that for metals with low work function a q2DES forms at 1-2 uc of LaAlO3 and is accompanied by a partial oxidation of the metal, a phenomenon that affects the q2DES properties and triggers the formation of defects. In contrast, for noble metals, the critical thickness is increased above 4 uc. The results are discussed in terms of a hybrid mechanism that incorporates electrostatic and chemical effects.



rate research

Read More

In heterostructures of LaAlO3 (LAO) and SrTiO3 (STO), two nonmagnetic insulators, various forms of magnetism have been observed [1-7], which may [8, 9] or may not [10] arise from interface charge carriers that migrate from the LAO to the interface in an electronic reconstruction [11]. We image the magnetic landscape [5] in a series of n-type samples of varying LAO thickness. We find ferromagnetic patches that appear only above a critical thickness, similar to that for conductivity [12]. Consequently we conclude that an interface reconstruction is necessary for the formation of magnetism. We observe no change in ferromagnetism with gate voltage, and detect ferromagnetism in a non-conducting p-type sample, indicating that the carriers at the interface do not need to be itinerant to generate magnetism. The fact that the ferromagnetism appears in isolated patches whose density varies greatly between samples strongly suggests that disorder or local strain induce magnetism in a population of the interface carriers.
Pulsed laser deposition of SrTiO3/LaGaO3 and SrTiO3/LaAlO3 interfaces has been analyzed with a focus on the kinetic energy of the ablated species. LaGaO3 and LaAlO3 plasma plumes were studied by fast photography and space-resolved optical emission spectroscopy. Reflection high energy electron diffraction was performed proving a layer-by-layer growth up to 10-1 mbar oxygen pressure. The role of the energetic plasma plume on the two-dimensional growth and the presence of interfacial defects at different oxygen growth pressure has been discussed in view of the conducting properties developing at such polar/non-polar interfaces.
Interplay of spin, charge, orbital and lattice degrees of freedom in oxide heterostructures results in a plethora of fascinating properties, which can be exploited in new generations of electronic devices with enhanced functionalities. The paradigm example is the interface between the two band insulators LaAlO3 and SrTiO3 (LAO/STO) that hosts two-dimensional electron system (2DES). Apart from the mobile charge carriers, this system exhibits a range of intriguing properties such as field effect, superconductivity and ferromagnetism, whose fundamental origins are still debated. Here, we use soft-X-ray angle-resolved photoelectron spectroscopy to penetrate through the LAO overlayer and access charge carriers at the buried interface. The experimental spectral function directly identifies the interface charge carriers as large polarons, emerging from coupling of charge and lattice degrees of freedom, and involving two phonons of different energy and thermal activity. This phenomenon fundamentally limits the carrier mobility and explains its puzzling drop at high temperatures.
Novel properties arising at interfaces between transition metal oxides, particularly the conductivity at the interface of LaAlO3 (LAO) and SrTiO3 (STO) band insulators, have generated new paradigms, challenges, and opportunities in condensed matter physics. Conventional transport measurements have established that intrinsic conductivity appears in LAO/STO interfaces when the LAO film matches or exceeds a critical thickness of 4 unit cells (uc). Recently, a number of experiments raise important questions about the role of the LAO film, the influence of photons, and the effective differences between vacuum/STO and LAO/STO, both above and below the standard critical thickness. Here, using angle-resolved photoemission spectroscopy (ARPES) on in situ prepared samples, as well as resonant inelastic x-ray scattering (RIXS), we study how the metallic STO surface state evolves during the growth of a crystalline LAO film. In all the samples, the character of the conduction bands, their carrier densities, the Ti3+ crystal fields, and the responses to photon irradiation bear strong similarities. However, LAO/STO interfaces exhibit intrinsic instability toward in-plane folding of the Fermi surface at and above the 4-uc thickness threshold. This ordering distinguishes these heterostructures from bare STO and sub-critical-thickness LAO/STO and coincides with the onset of unique properties such as magnetism and built-in conductivity.
The discovery of a two-dimensional (2D) electron gas at the (110)-oriented LaAlO3/SrTiO3 in- terface provided us with the opportunity to probe the effect of crystallographic orientation and the ensuing electronic reconstructions on interface properties beyond the conventional (001)-orientation. At temperatures below 200 mK, we have measured 2D superconductivity with a spatial extension significantly larger (d approx. 24 - 30 nm) than previously reported for (001)-oriented LaAlO3/SrTiO3 interfaces (d approx. 10 nm). The more extended superconductivity brings about the absence of violation of the Pauli paramagnetic limit for the upper critical fields, signaling the distinctive nature of the electronic structure of the (110)-oriented interface with respect to their (001)-counterparts
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا