No Arabic abstract
Current synoptic sky surveys monitor large areas of the sky to find variable and transient astronomical sources. As the number of detections per night at a single telescope easily exceeds several thousand, current detection pipelines make intensive use of machine learning algorithms to classify the detected objects and to filter out the most interesting candidates. A number of upcoming surveys will produce up to three orders of magnitude more data, which renders high-precision classification systems essential to reduce the manual and, hence, expensive vetting by human experts. We present an approach based on convolutional neural networks to discriminate between true astrophysical sources and artefacts in reference-subtracted optical images. We show that relatively simple networks are already competitive with state-of-the-art systems and that their quality can further be improved via slightly deeper networks and additional preprocessing steps -- eventually yielding models outperforming state-of-the-art systems. In particular, our best model correctly classifies about 97.3% of all real and 99.7% of all bogus instances on a test set containing 1,942 bogus and 227 real instances in total. Furthermore, the networks considered in this work can also successfully classify these objects at hand without relying on difference images, which might pave the way for future detection pipelines not containing image subtraction steps at all.
The observation of the transient sky through a multitude of astrophysical messengers hasled to several scientific breakthroughs these last two decades thanks to the fast evolution ofthe observational techniques and strategies employed by the astronomers. Now, it requiresto be able to coordinate multi-wavelength and multi-messenger follow-up campaign withinstruments both in space and on ground jointly capable of scanning a large fraction of thesky with a high imaging cadency and duty cycle. In the optical domain, the key challengeof the wide field of view telescopes covering tens to hundreds of square degrees is to dealwith the detection, the identification and the classification of hundreds to thousands of opticaltransient (OT) candidates every night in a reasonable amount of time. In the last decade, newautomated tools based on machine learning approaches have been developed to perform thosetasks with a low computing time and a high classification efficiency. In this paper, we presentan efficient classification method using Convolutional Neural Networks (CNN) to discard anybogus falsely detected in astrophysical images in the optical domain. We designed this toolto improve the performances of the OT detection pipeline of the Ground Wide field AngleCameras (GWAC) telescopes, a network of robotic telescopes aiming at monitoring the opticaltransient sky down to R=16 with a 15 seconds imaging cadency. We applied our trainedCNN classifier on a sample of 1472 GWAC OT candidates detected by the real-time detectionpipeline. It yields a good classification performance with 94% of well classified event and afalse positive rate of 4%.
Large-scale sky surveys have played a transformative role in our understanding of astrophysical transients, only made possible by increasingly powerful machine learning-based filtering to accurately sift through the vast quantities of incoming data generated. In this paper, we present a new real-bogus classifier based on a Bayesian convolutional neural network that provides nuanced, uncertainty-aware classification of transient candidates in difference imaging, and demonstrate its application to the datastream from the GOTO wide-field optical survey. Not only are candidates assigned a well-calibrated probability of being real, but also an associated confidence that can be used to prioritise human vetting efforts and inform future model optimisation via active learning. To fully realise the potential of this architecture, we present a fully-automated training set generation method which requires no human labelling, incorporating a novel data-driven augmentation method to significantly improve the recovery of faint and nuclear transient sources. We achieve competitive classification accuracy (FPR and FNR both below 1%) compared against classifiers trained with fully human-labelled datasets, whilst being significantly quicker and less labour-intensive to build. This data-driven approach is uniquely scalable to the upcoming challenges and data needs of next-generation transient surveys. We make our data generation and model training codes available to the community.
Human brain atlases provide spatial reference systems for data characterizing brain organization at different levels, coming from different brains. Cytoarchitecture is a basic principle of the microstructural organization of the brain, as regional differences in the arrangement and composition of neuronal cells are indicators of changes in connectivity and function. Automated scanning procedures and observer-independent methods are prerequisites to reliably identify cytoarchitectonic areas, and to achieve reproducible models of brain segregation. Time becomes a key factor when moving from the analysis of single regions of interest towards high-throughput scanning of large series of whole-brain sections. Here we present a new workflow for mapping cytoarchitectonic areas in large series of cell-body stained histological sections of human postmortem brains. It is based on a Deep Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a large number of un-annotated sections in between. The model learns to create all missing annotations in between with high accuracy, and faster than our previous workflow based on observer-independent mapping. The new workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts. It processes large data sets with sizes in the order of multiple Terabytes efficiently. The workflow was integrated into a web interface, to allow access without expertise in deep learning and batch computing. Applying deep neural networks for cytoarchitectonic mapping opens new perspectives to enable high-resolution models of brain areas, introducing CNNs to identify borders of brain areas.
We explore the effectiveness of deep learning convolutional neural networks (CNNs) for estimating strong gravitational lens mass model parameters. We have investigated a number of practicalities faced when modelling real image data, such as how network performance depends on the inclusion of lens galaxy light, the addition of colour information and varying signal-to-noise. Our CNN was trained and tested with strong galaxy-galaxy lens images simulated to match the imaging characteristics of the Large Synoptic Survey Telescope (LSST) and Euclid. For images including lens galaxy light, the CNN can recover the lens model parameters with an acceptable accuracy, although a 34 per cent average improvement in accuracy is obtained when lens light is removed. However, the inclusion of colour information can largely compensate for the drop in accuracy resulting from the presence of lens light. While our findings show similar accuracies for single epoch Euclid VIS and LSST r-band datasets, we find a 24 per cent increase in accuracy by adding g- and i-band images to the LSST r-band without lens light and a 20 per cent increase with lens light. The best network performance is obtained when it is trained and tested on images where lens light exactly follows the mass, but when orientation and ellipticity of the light is allowed to differ from those of the mass, the network performs most consistently when trained with a moderate amount of scatter in the difference between the mass and light profiles.
Cross-entropy loss together with softmax is arguably one of the most common used supervision components in convolutional neural networks (CNNs). Despite its simplicity, popularity and excellent performance, the component does not explicitly encourage discriminative learning of features. In this paper, we propose a generalized large-margin softmax (L-Softmax) loss which explicitly encourages intra-class compactness and inter-class separability between learned features. Moreover, L-Softmax not only can adjust the desired margin but also can avoid overfitting. We also show that the L-Softmax loss can be optimized by typical stochastic gradient descent. Extensive experiments on four benchmark datasets demonstrate that the deeply-learned features with L-softmax loss become more discriminative, hence significantly boosting the performance on a variety of visual classification and verification tasks.