Do you want to publish a course? Click here

Behind the dust curtain: the spectacular case of GRB 160623A

60   0   0.0 ( 0 )
 Added by Fabio Pintore Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the X-ray dust-scattering features observed around the afterglow of the gamma ray burst GRB 160623A. With an XMM-Newton observation carried out ~2 days after the burst, we found evidence of at least six rings, with angular size expanding between ~2 and 9 arcmin, as expected for X-ray scattering of the prompt GRB emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 +- 1.2 pc, 679.2 +- 1.9 pc, 789.0 +- 2.8 pc, 952 +- 5 pc, 1539 +- 20 pc and 5079 +- 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B from Zubko et al. 2004}) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7x10^20-1.5x10^22 cm^-2. The farthest dust-layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust-layers (distance, thickness, and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.



rate research

Read More

After the All-Sky Automated Survey for SuperNovae (ASAS-SN) discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such changing look Active Galactic Nuclei (AGN) are rare and provide us with important insights about AGN physics. Based on the Hbeta line width and the radius-luminosity relation, we estimate the mass of central black hole to be (4 +/- 1) x 10^7 M_sun. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a black hole of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
Our understanding of the evolutionary process has gone a long way since the publication, 150 years ago, of On the origin of species by Charles R. Darwin. The XXth Century witnessed great efforts to embrace replication, mutation, and selection within the framework of a formal theory, able eventually to predict the dynamics and fate of evolving populations. However, a large body of empirical evidence collected over the last decades strongly suggests that some of the assumptions of those classical models necessitate a deep revision. The viability of organisms is not dependent on a unique and optimal genotype. The discovery of huge sets of genotypes (or neutral networks) yielding the same phenotype --in the last term the same organism--, reveals that, most likely, very different functional solutions can be found, accessed and fixed in a population through a low-cost exploration of the space of genomes. The evolution behind the curtain may be the answer to some of the current puzzles that evolutionary theory faces, like the fast speciation process that is observed in the fossil record after very long stasis periods.
We report on the discovery and properties of the fading afterglow and underlying host galaxy of GRB 071028B, thereby facilitating a detailed comparison between these two. Observations were performed with the Gamma-ray Burst Optical and Near-infrared Detector at the 2.2 m telescope on the La Silla Paranal Observatory in Chile. We conducted five observations from 1.9 d to 227.2 d after the trigger and obtained deep images in the griz and JHKs bands. Based on accurate seven-channel photometry covering the optical to near-infrared wavelength range, we derive a photometric redshift of z = 0.94 +0.05 -0.10 for the unabsorbed host galaxy of GRB 071028B. In contrast, we show that the afterglow with an intrinsic extinction of AV(SB) = (0.70 +/- 0.11) mag is moderately absorbed and requires a relatively flat extinction curve. According to the reported Swift/BAT observations, the energetics yield an isotropic energy release of E(gamma,iso.,rest) = (1.4 +2.4 -0.7) x 10^51 erg.
We present broadband observations and analysis of Swift gamma-ray burst (GRB) 120119A. Our early-time afterglow detections began under 15 s after the burst in the host frame (redshift z = 1.73), and they yield constraints on the burst energetics and local environment. Late-time afterglow observations of the burst show evidence for a moderate column of dust (A_V ~ 1.1 mag) similar to, but statistically distinct from, dust seen along Small Magellanic Cloud sightlines. Deep late-time observations reveal a dusty, rapidly star-forming host galaxy. Most notably, our early-time observations exhibit a significant red-to-blue colour change in the first ~200 s after the trigger at levels heretofore unseen in GRB afterglows. This colour change, which is coincident with the final phases of the prompt emission, is a hallmark prediction of the photodestruction of dust in GRB afterglows. We test whether dust-destruction signatures are significantly distinct from other sources of colour change, namely a change in the intrinsic spectral index {beta}. We find that a time-varying power-law spectrum alone cannot adequately describe the observed colour change, and allowing for dust destruction (via a time-varying A_V) significantly improves the fit. While not definitively ruling out other possibilities, this event provides the best support yet for the direct detection of dust destruction in the local environment of a GRB.
We present observations and analysis of the broadband afterglow of Swift GRB 071025. Using optical and infrared (RIYJHK) photometry, we derive a photometric redshift of 4.4 < z < 5.2; at this redshift our simultaneous multicolour observations begin at ~30 s after the GRB trigger in the host frame and during the initial rising phase of the afterglow. We associate the light curve peak at 580 s in the observer frame with the formation of the forward shock, giving an estimate of the initial Lorentz factor Gamma_0 ~ 200. The red spectral energy distribution (even in regions not affected by the Lyman-alpha break) provides secure evidence of a large dust column. However, the inferred extinction curve shows a prominent flat component between 2000-3000 Angstroms in the rest-frame, inconsistent with any locally observed template but well-fit by models of dust formed by supernovae. Time-dependent fits to the extinction profile reveal no evidence of dust destruction and limit the decrease in the extinction column to Delta A_3000 < 0.54 mag after t = 50 s in the rest frame. Our observations provide evidence of a transition in dust properties at z~5, in agreement with studies of high-z quasars, and suggest that SN-formed dust continues to dominate the opacity of typical galaxies at this redshift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا