Do you want to publish a course? Click here

Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3

232   0   0.0 ( 0 )
 Added by Manuel Bibes
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The control of optical fields is usually achieved through the electro-optic or acousto-optic effect in single-crystal ferroelectric or polar compounds such as LiNbO3 or quartz. In recent years, tremendous progress has been made in ferroelectric oxide thin film technology - a field which is now a strong driving force in areas such as electronics, spintronics and photovoltaics. Here, we apply epitaxial strain engineering to tune the optical response of BiFeO3 thin films, and find a very large variation of the optical index with strain, corresponding to an effective elasto-optic coefficient larger than that of quartz. We observe a concomitant strain-driven variation in light absorption - reminiscent of piezochromism - which we show can be manipulated by an electric field. This constitutes an electrochromic effect that is reversible, remanent and not driven by defects. These findings broaden the potential of multiferroics towards photonics and thin film acousto-optic devices, and suggest exciting device opportunities arising from the coupling of ferroic, piezoelectric and optical responses.



rate research

Read More

We report experimental evidence for pressure instabilities in the model multiferroic BiFeO3 and namely reveal two structural phase transitions around 3 GPa and 10 GPa by using diffraction and far-infrared spectroscopy at a synchrotron source. The intermediate phase from 3 to 9 GPa crystallizes in a monoclinic space group, with octahedra tilts and small cation displacements. When the pressure is further increased the cation displacements (and thus the polar character) of BiFeO3 is suppressed above 10 GPa. The above 10 GPa observed non-polar orthorhombic Pnma structure is in agreement with recent theoretical ab-initio prediction, while the intermediate monoclinic phase was not predicted theoretically.
We have determined the full magnetic dispersion relations of multiferroic BiFeO3. In particular, two excitation gaps originating from magnetic anisotropies have been clearly observed. The direct observation of the gaps enables us to accurately determine the Dzyaloshinskii-Moriya (DM) interaction and the single ion anisotropy. The DM interaction supports a strong magneto-electric coupling in this compound.
Multiferroic BiFeO3 ceramics have been doped with Ca. The smaller ionic size of Ca compared with Bi means that doping acts as a proxy for hydrostatic pressure, at a rate of 1%Ca=0.3GPa. It is also found that the magnetic Neel temperature (TNeel) increases as Ca concentration increases, at a rate of 0.66K per 1%Ca (molar). Based on the effect of chemical pressure on TNeel, we argue that applying hydrostatic pressure to pure BiFeO3 can be expected to increase its magnetic transition temperature at a rate around ~2.2K/GPa. The results also suggest that pressure (chemical or hydrostatic) could be used to bring the ferroelectric critical temperature, Tc, and the magnetic TNeel closer together, thereby enhancing magnetoelectric coupling, provided that electrical conductivity can be kept sufficiently low.
In multiferroic BiFeO3 thin films grown on highly mismatched LaAlO3 substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic properties. Notably, the highly distorted phase quasi-concomitantly presents an abrupt structural change, transforms from a hard to a soft ferroelectric and transitions from antiferromagnetic to paramagnetic at 360+/-20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric and piezomagnetic responses, with potential in many applications fields.
The magnetic-field-dependent spin ordering of strained BiFeO3 films is determined using nuclear resonant scattering and Raman spectroscopy. The critical field required to destroy the cycloidal modulation of the Fe spins is found to be significantly lower than in the bulk, with appealing implications for field-controlled spintronic and magnonic devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا