Solid state qubits from paramagnetic point defects in solids are promising platforms to realize quantum networks and novel nanoscale sensors. Recent advances in materials engineering make possible to create proximate qubits in solids that might interact with each other, leading to electron spin/charge fluctuation. Here we develop a method to calculate the tunneling-mediated charge diffusion between point defects from first principles, and apply it to nitrogen-vacancy (NV) qubits in diamond. The calculated tunneling rates are in quantitative agreement with previous experimental data. Our results suggest that proximate neutral and negatively charged NV defect pairs can form an NV--NV molecule. A tunneling-mediated model for the source of decoherence of the near-surface NV qubits is developed based on our findings on the interacting qubits in diamond.
Nitrogen-vacancy (NV) centers in diamond can be used as quantum sensors to image the magnetic field with nanoscale resolution. However, nanoscale electric-field mapping has not been achieved so far because of the relatively weak coupling strength between NV and electric field. Using individual shallow NVs, here we succeeded to quantitatively image the contours of electric field from a sharp tip of a qPlus-based atomic force microscope (AFM), and achieved a spatial resolution of ~10 nm. Through such local electric fields, we demonstrated electric control of NVs charge state with sub-5 nm precision. This work represents the first step towards nanoscale scanning electrometry based on a single quantum sensor and may open up new possibility of quantitatively mapping local charge, electric polarization, and dielectric response in a broad spectrum of functional materials at nanoscale.
Recent studies of silicon spin qubits at temperatures above 1 K are encouraging demonstrations that the cooling requirements for solid-state quantum computing can be considerably relaxed. However, qubit readout mechanisms that rely on charge sensing with a single-island single-electron transistor (SISET) quickly lose sensitivity due to thermal broadening of the electron distribution in the reservoirs. Here we exploit the tunneling between two quantised states in a double-island SET (DISET) to demonstrate a charge sensor with an improvement in signal-to-noise by an order of magnitude compared to a standard SISET, and a single-shot charge readout fidelity above 99 % up to 8 K at a bandwidth > 100 kHz. These improvements are consistent with our theoretical modelling of the temperature-dependent current transport for both types of SETs. With minor additional hardware overheads, these sensors can be integrated into existing qubit architectures for high fidelity charge readout at few-kelvin temperatures.
We present details of our effective computational methods based on the real-space finite-difference formalism to elucidate electronic and magnetic properties of the two-dimensional (2D) materials within the framework of the density functional theory. The real-space finite-difference formalism enables us to treat truly 2D computational models by imposing individual boundary condition on each direction. The formulae for practical computations under the boundary conditions specific to the 2D materials are derived and the electronic band structures of 2D materials are demonstrated using the proposed method. Additionally, we introduce other first-principles works on the MoS2 monolayer focusing on the modulation of electronic and magnetic properties originating from lattice defects.
Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and Pt(111) surfaces is so weak that its unique ultrarelativistic electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function ~5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd and Ti. This chemisorption involves hybridization between graphene $p_z$-states and metal d-states that opens a band gap in graphene. The graphene work function is as a result reduced considerably. In a current-in-plane device geometry this should lead to n-type doping of graphene.
The early stage density oscillations of the electronic charge in molecules irradiated by an attosecond XUV pulse takes place on femto- or subfemtosecond timescales. This ultrafast charge migration process is a central topic in attoscience as it dictates the relaxation pathways of the molecular structure. A predictive quantum theory of ultrafast charge migration should incorporate the atomistic details of the molecule, electronic correlations and the multitude of ionization channels activated by the broad-bandwidth XUV pulse. In this work we propose a first-principles Non Equilibrium Greens Function method fulfilling all three requirements, and apply it to a recent experiment on the photoexcited phenylalanine aminoacid. Our results show that dynamical correlations are necessary for a quantitative overall agreement with the experimental data. In particular, we are able to capture the transient oscillations at frequencies 0.15PHz and 0.30PHz in the hole density of the amine group, as well as their suppression and the concomitant development of a new oscillation at frequency 0.25PHz after about 14 femtoseconds.
Jyh-Pin Chou
,Zoltan Bodrog
,
.
(2017)
.
"First principles study of charge diffusion between proximate solid state qubits and its implications on sensor applications"
.
\\'Ad\\'am Gali
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا