Do you want to publish a course? Click here

State-to-state endothermic and nearly thermoneutral reactions in an ultracold atom-dimer mixture

70   0   0.0 ( 0 )
 Added by Bo Zhao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chemical reactions at ultracold temperature provide an ideal platform to study chemical reactivity at the fundamental level, and to understand how chemical reactions are governed by quantum mechanics. Recent years have witnessed the remarkable progress in studying ultracold chemistry with ultracold molecules. However, these works were limited to exothermic reactions. The direct observation of state-to-state ultracold endothermic reaction remains elusive. Here we report on the investigation of endothermic and nearly thermoneutral atom-exchange reactions in an ultracold atom-dimer mixture. By developing an indirect reactant-preparation method based on a molecular bound-bound transition, we are able to directly observe a universal endothermic reaction with tunable energy threshold and study the state-to-state reaction dynamics. The reaction rate coefficients show a strikingly threshold phenomenon. The influence of the reverse reaction on the reaction dynamics is observed for the endothermic and nearly thermoneutral reactions. We carry out zero-range quantum mechanical scattering calculations to obtain the reaction rate coefficients, and the three-body parameter is determined by comparison with the experiments. The observed endothermic and nearly thermoneutral reaction may be employed to implement collisional Sisyphus cooling of molecules, study the chemical reactions in degenerate quantum gases and conduct quantum simulation of Kondo effect with ultracold atoms.

rate research

Read More

We report on the observation of an elementary exchange process in an optically trapped ultracold sample of atoms and Feshbach molecules. We can magnetically control the energetic nature of the process and tune it from endoergic to exoergic, enabling the observation of a pronounced threshold behavior. In contrast to relaxation to more deeply bound molecular states, the exchange process does not lead to trap loss. We find excellent agreement between our experimental observations and calculations based on the solutions of three-body Schrodinger equation in the adiabatic hyperspherical representation. The high efficiency of the exchange process is explained by the halo character of both the initial and final molecular states.
Quantum control of reactive systems has enabled microscopic probes of underlying interaction potentials, the opening of novel reaction pathways, and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. In this work, we realize this goal through the nuclear spin degree of freedom, a result which relies on the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules, we find that the system retains a near-perfect memory of the reactants nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a bimolecular reaction with quantum state resolution. The techniques demonstrated here open up the possibilities to study quantum interference between reaction pathways, quantum entanglement between reaction products, and ultracold reaction dynamics at the state-to-state level.
In an ultracold, optically trapped mixture of $^{87}$Rb and metastable triplet $^4$He atoms we have studied trap loss for different spin-state combinations, for which interspecies Penning ionization is the main two-body loss process. We observe long trapping lifetimes for the purely quartet spin-state combination, indicating strong suppression of Penning ionization loss by at least two orders of magnitude. For the other spin-mixtures we observe short lifetimes that depend linearly on the doublet character of the entrance channel. We compare the extracted loss rate coefficient with recent predictions of multichannel quantum-defect theory for reactive collisions involving a strong exothermic loss channel and find near-universal loss for doublet scattering. Our work demonstrates control of reactive collisions by internal atomic state preparation.
127 - T. Xie 2020
We propose a method to suppress the chemical reactions between ultracold bosonic ground-state $^{23}$Na$^{87}$Rb molecules based on optical shielding. By applying a laser with a frequency blue-detuned from the transition between the lowest rovibrational level of the electronic ground state $X^1Sigma^+ (v_X=0, j_X=0)$, and the long-lived excited level $b^3Pi_0 (v_b=0, j_b=1)$, the long-range dipole-dipole interaction between the colliding molecules can be engineered, leading to a dramatic suppression of reactive and photoinduced inelastic collisions, for both linear and circular laser polarizations. We demonstrate that the spontaneous emission from $b^3Pi_0 (v_b=0, j_b=1)$ does not deteriorate the shielding process. This opens the possibility for a strong increase of the lifetime of cold molecule traps, and for an efficient evaporative cooling. We also anticipate that the proposed mechanism is valid for alkali-metal diatomics with sufficiently large dipole-dipole interactions.
Starting from weakly bound Feshbach molecules, we demonstrate a two-photon pathway to the dipolar ground state of bi-alkali molecules that involves only singlet-to-singlet optical transitions. This pathway eliminates the search for a suitable intermediate state with sufficient singlet-triplet mixing and the exploration of its hyperfine structure, as is typical for pathways starting from triplet dominated Feshbach molecules. By selecting a Feshbach state with a stretched singlet hyperfine component and controlling the polarization of the excitation laser, we assure coupling to only a single hyperfine component of the $textrm{A}^{1}Sigma^{+}$ excited potential, even if the hyperfine structure is not resolved. Similarly, we address a stretched hyperfine component of the $textrm{X}^{1}Sigma^{+}$ rovibrational ground state, and therefore an ideal three level system is established. We demonstrate this pathway with ${}^{6}textrm{Li}{}^{40}textrm{K}$ molecules. By exploring deeply bound states of the $textrm{A}^{1}Sigma^{+}$ potential, we are able to obtain large and balanced Rabi frequencies for both transitions. This method can be applied to other molecular species.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا