No Arabic abstract
Noncentrosymmetric metals are anticipated to exhibit a $dc$ photocurrent in the nonlinear optical response caused by the Berry curvature dipole in momentum space. Weyl semimetals (WSMs) are expected to be excellent candidates for observing these nonlinear effects because they carry a large Berry curvature concentrated in small regions, i.e., near the Weyl points. We have implemented the semiclassical Berry curvature dipole formalism into an $ab~initio$ scheme and investigated the second-order nonlinear response for two representative groups of materials: the TaAs-family type-I WSMs and MoTe$_2$-family type-II WSMs. Both types of WSMs exhibited a Berry curvature dipole, in which type-II Weyl points are usually superior to the type-I because of the strong tilt. Corresponding nonlinear susceptibilities in several materials promise a nonlinear Hall effect in the $dc$ field limit, which is within the experimentally detectable range.
The quest for nonmagnetic Weyl semimetals with high tunability of phase has remained a demanding challenge. As the symmetry breaking control parameter, the ferroelectric order can be steered to turn on/off the Weyl semimetals phase, adjust the band structures around the Fermi level, and enlarge/shrink the momentum separation of Weyl nodes which generate the Berry curvature as the emergent magnetic field. Here, we report the realization of a ferroelectric nonmagnetic Weyl semimetal based on indium doped Pb1 xSnxTe alloy where the underlying inversion symmetry as well as mirror symmetry is broken with the strength of ferroelectricity adjustable via tuning indium doping level and Sn/Pb ratio. The transverse thermoelectric effect, i.e., Nernst effect both for out of plane and in plane magnetic field geometry, is exploited as a Berry curvature sensitive experimental probe to manifest the generation of Berry curvature via the redistribution of Weyl nodes under magnetic fields. The results demonstrate a clean non-magnetic Weyl semimetal coupled with highly tunable ferroelectric order, providing an ideal platform for manipulating the Weyl fermions in nonmagnetic system.
So far, the circular photogalvanic effect (CPGE) is the only possible quantized signal in Weyl semimetals. With inversion and mirror symmetries broken, Weyl and multifold fermions in band structures with opposite chiralities can stay at different energies and generate a net topological charge. Such kind of net topological charge can present as a quantized signal in the circular polarized light induced injection current. According to current theoretical understanding, RhSi and its counterparts are believed to be the most promising candidate for the experimental observation of the quantized CPGE. However, the real quantized signal was not experimentally observed to date. Since all the previous theoretical studies for the quantized CPGE were based on effective model but not realistic band structures, it should lose some crucial details that influence the quantized signal. The current status motives us to perform a realistic ab-initio study for the CPGE. Our result shows that the quantized value is very easy to be interfered by trivial bands related optic transitions, and an fine tuning of the chemical potential by doping is essential for the observation of quantized CPGE. This work performs the first ab-initio analysis for the quantized CPGE based on realistic electronic band structure and provides an effective way to solve the current problem for given materials.
Topological Weyl semimetals (WSMs) have been predicted to be excellent candidates for detecting Berry curvature dipole (BCD) and the related non-linear effects in electronics and optics due to the large Berry curvature concentrated around the Weyl nodes. And yet, linearized models of isolated tilted Weyl cones only realize a diagonal non-zero BCD tensor which sum to zero in the model of WSM with multiple Weyl nodes in the presence of mirror symmetry. On the other hand, recent textit{ab initio} work has found that realistic WSMs like TaAs-type or MoTe$_2$-type compounds, which have mirror symmetry, indeed show an off-diagonal BCD tensor with an enhanced magnitude for its non-zero components. So far, there is a lack of theoretical work addressing this contradiction for 3D WSMs. In this paper, we systematically study the BCD in 3D WSMs using lattice Weyl Hamiltonians, which go beyond the linearized models. We find that the non-zero BCD and its related important features for these WSMs do not rely on the contribution from the Weyl nodes. Instead, they are dependent on the part of the Fermi surface that lies textit{between} the Weyl nodes, in the region of the reciprocal space where neighboring Weyl cones overlap. For large enough chemical potential such Fermi surfaces are present in the lattice Weyl Hamiltonians as well as in the realistic WSMs. We also show that, a lattice Weyl Hamitonian with a non-zero chiral chemical potential for the Weyl cones can also support dips or peaks in the off-diagonal components of the BCD tensor near the Weyl nodes themselves, consistent with recent textit{ab initio} work.
A magnetic Weyl semimetal is a recent focus of extensive research as it may exhibit large and robust transport phenomena associated with topologically protected Weyl points in momentum space. Since a magnetic texture provides a handle for the configuration of the Weyl points and its transport response, understanding of magnetic dynamics should form a basis of future control of a topological magnet. Mn3Sn is an example of an antiferromagnetic Weyl semimetal that exhibits a large response comparable to the one observed in ferromagnets despite a vanishingly small magnetization. The non-collinear spin order in Mn3Sn can be viewed as a ferroic order of cluster magnetic octupole and breaks the time-reversal symmetry, stabilizing Weyl points and the significantly enhanced Berry curvature near the Fermi energy. Here we report our first observation of time-resolved octupole oscillation in Mn3Sn. In particular, we find the giant effective damping of the octupole dynamics, and it is feasible to conduct an ultrafast switching at < 10 ps, a hundred times faster than the case of spin-magnetization in a ferromagnet. Moreover, high domain wall velocity over 10 km/s is theoretically predicted. Our work paves the path towards realizing ultrafast electronic devices using the topological antiferromagnet.
Dirac semimetal (DSM) hosts four-fold degenerate isolated band-crossing points with linear dispersion, around which the quasiparticles resemble the relativistic Dirac Fermions. It can be described by a 4 * 4 massless Dirac Hamiltonian which can be decomposed into a pair of Weyl points or gaped into an insulator. Thus, crystal symmetry is critical to guarantee the stable existence. On the contrary, by breaking crystal symmetry, a DSM may transform into a Weyl semimetal (WSM) or a topological insulator (TI). Here, by taking hexagonal LiAuSe as an example, we find that it is a starfruit shaped multiple nodal chain semimetal in the absence of spin-orbit coupling(SOC). In the presence of SOC, it is an ideal DSM naturally with the Dirac points locating at Fermi level exactly, and it would transform into WSM phase by introducing external Zeeman field or by magnetic doping with rare-earth atom Sm. It could also transform into TI state by breaking rotational symmetry. Our studies show that DSM is a critical point for topological phase transition, and the conclusion can apply to most of the DSM materials, not limited to the hexagonal material LiAuSe.