Do you want to publish a course? Click here

Modeling flow and transport in fracture networks using graphs

67   0   0.0 ( 0 )
 Added by Satish Karra
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although, modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithms under-prediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with $O(10^4)$ times lower times than the DFN, makes the graph algorithm, an ideal technique to incorporate in uncertainty quantification methods.



rate research

Read More

A pore network modeling (PNM) framework for the simulation of transport of charged species, such as ions, in porous media is presented. It includes the Nernst-Planck (NP) equations for each charged species in the electrolytic solution in addition to a charge conservation equation which relates the species concentration to each other. Moreover, momentum and mass conservation equations are adopted and there solution allows for the calculation of the advective contribution to the transport in the NP equations. The proposed framework is developed by first deriving the numerical model equations (NMEs) corresponding to the partial differential equations (PDEs) based on several different time and space discretization schemes, which are compared to assess solutions accuracy. The derivation also considers various charge conservation scenarios, which also have pros and cons in terms of speed and accuracy. Ion transport problems in arbitrary pore networks were considered and solved using both PNM and finite element method (FEM) solvers. Comparisons showed an average deviation, in terms of ions concentration, between PNM and FEM below $5%$ with the PNM simulations being over ${10}^{4}$ times faster than the FEM ones for a medium including about ${10}^{4}$ pores. The improved accuracy is achieved by utilizing more accurate discretization schemes for both the advective and migrative terms, adopted from the CFD literature. The NMEs were implemented within the open-source package OpenPNM based on the iterative Gummel algorithm with relaxation. This work presents a comprehensive approach to modeling charged species transport suitable for a wide range of applications from electrochemical devices to nanoparticle movement in the subsurface.
Reduced Order Modeling (ROM) for engineering applications has been a major research focus in the past few decades due to the unprecedented physical insight into turbulence offered by high-fidelity CFD. The primary goal of a ROM is to model the key physics/features of a flow-field without computing the full Navier-Stokes (NS) equations. This is accomplished by projecting the high-dimensional dynamics to a low-dimensional subspace, typically utilizing dimensionality reduction techniques like Proper Orthogonal Decomposition (POD), coupled with Galerkin projection. In this work, we demonstrate a deep learning based approach to build a ROM using the POD basis of canonical DNS datasets, for turbulent flow control applications. We find that a type of Recurrent Neural Network, the Long Short Term Memory (LSTM) which has been primarily utilized for problems like speech modeling and language translation, shows attractive potential in modeling temporal dynamics of turbulence. Additionally, we introduce the Hurst Exponent as a tool to study LSTM behavior for non-stationary data, and uncover useful characteristics that may aid ROM development for a variety of applications.
We present a topology-based method for mesh-partitioning in three-dimensional discrete fracture network (DFN) simulations that take advantage of the intrinsic multi-level nature of a DFN. DFN models are used to simulate flow and transport through low-permeability fractured media in the subsurface by explicitly representing fractures as discrete entities. The governing equations for flow and transport are numerically integrated on computational meshes generated on the interconnected fracture networks. Modern high-fidelity DFN simulations require high-performance computing on multiple processors where performance and scalability depend partially on obtaining a high-quality partition of the mesh to balance work-loads and minimize communication across all processors. The discrete structure of a DFN naturally lends itself to various graph representations. We develop two applications of the multilevel graph partitioning algorithm to partition the mesh of a DFN. In the first, we project a partition of the graph based on the DFN topology onto the mesh of the DFN and in the second, this projection is used as the initial condition for further partitioning refinement of the mesh. We compare the performance of these methods with standard multi-level graph partitioning using graph-based metrics (cut, imbalance, partitioning time), computational-based metrics (FLOPS, iterations, solver time), and total run time. The DFN-based and the mesh-based partitioning methods are comparable in terms of the graph-based metrics, but the time required to obtain the partition is several orders of magnitude faster using the DFN-based partitions. In combination, these partitions are several orders of magnitude faster than the mesh-based partition. In turn, this hybrid method outperformed both of the other methods in terms of the total run time.
The main purpose of this work is to simulate two-phase flow in the form of immiscible displacement through anisotropic, three-dimensional (3D) discrete fracture networks (DFN). The considered DFNs are artificially generated, based on a general distribution function or are conditioned on measured data from deep geological investigations. We introduce several modifications to the invasion percolation (MIP) to incorporate fracture inclinations, intersection lines, as well as the hydraulic path length inside the fractures. Additionally a trapping algorithm is implemented that forbids any advance of the invading fluid into a region, where the defending fluid is completely encircled by the invader and has no escape route. We study invasion, saturation, and flow through artificial fracture networks, with varying anisotropy and size and finally compare our findings to well studied, conditioned fracture networks.
We present an ultrafast neural network (NN) model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 300 million flux calculations of the quasilinear gyrokinetic transport model QuaLiKiz. The database covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modelling framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and validated through application to three JET shots covering a representative spread of H-mode operating space, predicting turbulent transport of energy and particles in the plasma core. JINTRAC-QLKNN and RAPTOR-QLKNN are able to accurately reproduce JINTRAC-QuaLiKiz T i,e and n e profiles, but 3 to 5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order 1%-15%. Also the dynamic behaviour was well captured by QLKNN, with differences of only 4%-10% compared to JINTRAC-QuaLiKiz observed at mid-radius, for a study of density buildup following the L-H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak modelling is a promising route towards enabling accurate and fast tokamak scenario optimization, Uncertainty Quantification, and control applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا