No Arabic abstract
In this paper, we investigate the wavelet coefficients for function spaces $mathcal{A}_k^p={f: |(i omega)^khat{f}(omega)|_pleq 1}, kin N, pin(1,infty)$ using an important quantity $C_{k,p}(psi)$. In particular, Bernstein type inequalities associated with wavelets are established. We obtained a sharp inequality of Bernstein type for splines, which induces a lower bound for the quantity $C_{k,p}(psi)$ with $psi$ being the semiorthogonal spline wavelets. We also study the asymptotic behavior of wavelet coefficients for both the family of Daubechies orthonormal wavelets and the family of semiorthogonal spline wavelets. Comparison of these two families is done by using the quantity $C_{k,p}(psi)$.
We prove Inequalities similar to those of Bernstein for non-periodic splines in $L_2$ space.
We are proving a Bernstein type inequality in the shift-invariant spaces of $L_2(R)$.
Let ${mathcal P}_k$ denote the set of all algebraic polynomials of degree at most $k$ with real coefficients. Let ${mathcal P}_{n,k}$ be the set of all algebraic polynomials of degree at most $n+k$ having exactly $n+1$ zeros at $0$. Let $$|f|_A := sup_{x in A}{|f(x)|}$$ for real-valued functions $f$ defined on a set $A subset {Bbb R}$. Let $$V_a^b(f) := int_a^b{|f^{prime}(x)| , dx}$$ denote the total variation of a continuously differentiable function $f$ on an interval $[a,b]$. We prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 frac nkleq min_{P in {mathcal P}_{n,k}}{frac{|P^{prime}|_{[0,1]}}{V_0^1(P)}} leq min_{P in {mathcal P}_{n,k}}{frac{|P^{prime}|_{[0,1]}}{|P(1)|}} leq c_2 left( frac nk + 1 right)$$ for all integers $n geq 1$ and $k geq 1$. We also prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 left(frac nkright)^{1/2} leq min_{P in {mathcal P}_{n,k}}{frac{|P^{prime}(x)sqrt{1-x^2}|_{[0,1]}}{V_0^1(P)}} leq min_{P in {mathcal P}_{n,k}}{frac{|P^{prime}(x)sqrt{1-x^2}|_{[0,1]}}{|P(1)|}} leq c_2 left(frac nk + 1right)^{1/2}$$ for all integers $n geq 1$ and $k geq 1$.
Following the recent work of Jiang and Lin (Linear Algebra Appl. 585 (2020) 45--49), we present more results (bounds) on Harnack type inequalities for matrices in terms of majorization (i.e., in partial products) of eigenvalues and singular values. We discuss and compare the bounds derived through different ways. Jiang and Lins results imply Tungs version of Harnacks inequality (Proc. Amer. Math. Soc. 15 (1964) 375--381); our results %with simpler proofs are stronger and more general than Jiang and Lins. We also show some majorization inequalities concerning Cayley transforms. Some open problems on spectral norm and eigenvalues are proposed.
For a general measure space $(Omega,mu)$, it is shown that for every band $M$ in $L_p(mu)$ there exists a decomposition $mu=mu+mu^{primeprime}$ such that $M=L_p(mu)={fin L_p(mu);f=0 mu^{primeprime}text{-a.e.}}$. The theory is illustrated by an example, with an application to absorption semigroups.