Quantum states and the modes of the optical field they occupy are intrinsically connected. Here, we show that one can trade the knowledge of a quantum state to gain information about the underlying mode structure and, vice versa, the knowledge about the modal shape allows one to perform a complete tomography of the quantum state. Our scheme can be executed experimentally using the interference between the signal and probe states on an unbalanced beam splitter with a single on/off-type detector. By changing the temporal overlap between the signal and the probe, the imperfect interference is turned into a powerful tool to extract the information about the signal mode structure. A single on/off detector is already sufficient to collect the necessary measurement data for the reconstruction of the diagonal part of the density matrix of an arbitrary multi-mode signal. Moreover, we experimentally demonstrate the feasibility of our scheme with just one control parameter -- the time-delay of a coherent probe field.