Do you want to publish a course? Click here

All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures

300   0   0.0 ( 0 )
 Added by Jonas Nils Becker
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The silicon-vacancy center in diamond offers attractive opportunities in quantum photonics due to its favorable optical properties and optically addressable electronic spin. Here, we combine both to achieve all-optical coherent control of its spin states. We utilize this method to explore spin dephasing effects in an impurity-rich sample beyond the limit of phonon-induced decoherence: Employing Ramsey and Hahn-echo techniques at 12mK base temperature we identify resonant coupling to a substitutional nitrogen spin bath as the limiting decoherence source for the electron spin.



rate research

Read More

The silicon-vacancy ($mathrm{SiV}^-$) color center in diamond has attracted attention due to its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show high fidelity optical initialization and readout of electronic spin in a single $mathrm{SiV}^-$ center with a spin relaxation time of $T_1=2.4pm0.2$ ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of $T_2^star=35pm3$ ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherences by engineering interactions with phonons. These results establish the $mathrm{SiV}^-$ center as a solid-state spin-photon interface.
We demonstrate an all-optical thermometer based on an ensemble of silicon-vacancy centers (SiVs) in diamond by utilizing a temperature dependent shift of the SiV optical zero-phonon line transition frequency, $Deltalambda/Delta T= 6.8,mathrm{GHz/K}$. Using SiVs in bulk diamond, we achieve $70,mathrm{mK}$ precision at room temperature with a sensitivity of $360,mathrm{mK/sqrt{Hz}}$. Finally, we use SiVs in $200,mathrm{nm}$ nanodiamonds as local temperature probes with $521,mathrm{ mK/sqrt{Hz}}$ sensitivity. These results open up new possibilities for nanoscale thermometry in biology, chemistry, and physics, paving the way for control of complex nanoscale systems.
We characterize a high-density sample of negatively charged silicon-vacancy (SiV$^-$) centers in diamond using collinear optical multidimensional coherent spectroscopy. By comparing the results of complementary signal detection schemes, we identify a hidden population of ce{SiV^-} centers that is not typically observed in photoluminescence, and which exhibits significant spectral inhomogeneity and extended electronic $T_2$ times. The phenomenon is likely caused by strain, indicating a potential mechanism for controlling electric coherence in color-center-based quantum devices.
Phonons are considered to be universal quantum transducers due to their ability to couple to a wide variety of quantum systems. Among these systems, solid-state point defect spins are known for being long-lived optically accessible quantum memories. Recently, it has been shown that inversion-symmetric defects in diamond, such as the negatively charged silicon vacancy center (SiV), feature spin qubits that are highly susceptible to strain. Here, we leverage this strain response to achieve coherent and low-power acoustic control of a single SiV spin, and perform acoustically driven Ramsey interferometry of a single spin. Our results demonstrate a novel and efficient method of spin control for these systems, offering a path towards strong spin-phonon coupling and phonon-mediated hybrid quantum systems.
A solid-state system combining a stable spin degree of freedom with an efficient optical interface is highly desirable as an element for integrated quantum optical and quantum information systems. We demonstrate a bright color center in diamond with excellent optical properties and controllable electronic spin states. Specifically, we carry out detailed optical spectroscopy of a Germanium Vacancy (GeV) color center demonstrating optical spectral stability. Using an external magnetic field to lift the electronic spin degeneracy, we explore the spin degree of freedom as a controllable qubit. Spin polarization is achieved using optical pumping, and a spin relaxation time in excess of 20 $mu$s is demonstrated. Optically detected magnetic resonance (ODMR) is observed in the presence of a resonant microwave field. ODMR is used as a probe to measure the Autler-Townes effect in a microwave-optical double resonance experiment. Superposition spin states were prepared using coherent population trapping, and a pure dephasing time of about 19 ns was observed. Prospects for realizing coherent quantum registers based on optically controlled GeV centers are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا