Do you want to publish a course? Click here

Magnetic and superconducting properties of the heavy-fermion CeCoIn5 epitaxial film probed by nuclear quadrupole resonance

337   0   0.0 ( 0 )
 Added by Takayoshi Yamanaka
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since the progress in the fabrication techniques of thin-films of exotic materials such as strongly correlated heavy-fermion compounds, microscopic studies of the magnetic and electronic properties inside the films have been needed. Herein, we report the first observation of 115In nuclear quadrupole resonance (NQR) in an epitaxial film of the heavy-fermion superconductor CeCoIn5, for which the microscopic field gradient within the unit cell as well as magnetic and superconducting properties at zero field are evaluated. We find that the nuclear spin-lattice relaxation rate in the film is in excellent agreement with that of bulk crystals, whereas the NQR spectra show noticeable shifts and significant broadening indicating a change in the electric-field distribution inside the film. The analysis implies a displacement of In layers in the film, which however does not affect the magnetic fluctuations and superconducting pairing. This implies that inhomogeneity of the electronic field gradient in the film sample causes no pair breaking effect.



rate research

Read More

We have performed the $^{125}$Te-nuclear magnetic resonance (NMR) measurement in the field along the $b$ axis on the newly discovered superconductor UTe$_2$, which is a candidate of a spin-triplet superconductor. The nuclear spin-lattice relaxation rate divided by temperature $1/T_1T$ abruptly decreases below a superconducting (SC) transition temperature $T_c$ without showing a coherence peak, indicative of UTe$_2$ being an unconventional superconductor. It was found that the temperature dependence of $1/T_1T$ in the SC state cannot be understood by a single SC gap behavior but can be explained by a two SC gap model. The Knight shift, proportional to the spin susceptibility, decreases below $T_c$, but the magnitude of the decrease is much smaller than the decrease expected in the spin-singlet pairing. Rather, the small Knight-shift decrease as well as the absence of the Pauli-depairing effect can be interpreted by the spin triplet scenario.
We have performed $^{63}$Cu nuclear magnetic resonance/nuclear quadrupole resonance measurements to investigate the magnetic and superconducting (SC) properties on a superconductivity dominant ($S$-type) single crystal of CeCu$_2$Si$_2$. Although the development of antiferromagnetic (AFM) fluctuations down to 1~K indicated that the AFM criticality was close, Korringa behavior was observed below 0.8~K, and no magnetic anomaly was observed above $T_{rm c} sim$ 0.6 K. These behaviors were expected in $S$-type CeCu$_2$Si$_2$. The temperature dependence of the nuclear spin-lattice relaxation rate $1/T_1$ at zero field was almost identical to that in the previous polycrystalline samples down to 130~mK, but the temperature dependence deviated downward below 120~mK. In fact, $1/T_1$ in the SC state could be fitted with the two-gap $s_{pm}$-wave rather than the two-gap $s_{++}$-wave model down to 90~mK. Under magnetic fields, the spin susceptibility in both directions clearly decreased below $T_{rm c}$, indicative of the formation of spin singlet pairing. The residual part of the spin susceptibility was understood by the field-induced residual density of states evaluated from $1/T_1T$, which was ascribed to the effect of the vortex cores. No magnetic anomaly was observed above the upper critical field $H_{c2}$, but the development of AFM fluctuations was observed, indicating that superconductivity was realized in strong AFM fluctuations.
We report $^{115}$In nuclear quadrupolar resonance (NQR) measurements on the heavy-fermion superconductor PuCoIn$_5$, in the temperature range $0.29{rm K}leq Tleq 75{rm K}$. The NQR parameters for the two crystallographically inequivalent In sites are determined, and their temperature dependence is investigated. A linear shift of the quadrupolar frequency with lowering temperature below the critical value $T_c$ is revealed, in agreement with the prediction for composite pairing. The nuclear spin-lattice relaxation rate $T_1^{-1}(T)$ clearly signals a superconducting (SC) phase transition at $T_csimeq 2.3$K, with strong spin fluctuations, mostly in-plane, dominating the relaxation process in the normal state near to $T_c$. Analysis of the $T_1^{-1}$ data in the SC state suggests that PuCoIn$_5$ is a strong-coupling $d$-wave superconductor.
Nuclear quadrupole resonance (NQR) measurements were performed on the heavy fermion superconductor Ce3PtIn11 with Tc = 0.32 K. The temperature dependence of both spin-lattice relaxation rate 1/T1 and NQR spectra evidences the occurrence of two successive magnetic transitions with TN1 = 2.2 K and TN2 = 2.0 K. In successive magnetic transitions, even though the magnetic moment at the Ce(2) site plays a major role, the magnetic moment at the Ce(1) site also contributes to some extent. While a commensurate antiferromagnetic ordered state appears for TN2 < T < TN1, a partially incommensurate antiferromagnetic ordered state is suggested for T < TN2.
We report $^{75}$As nuclear quadrupole resonance (NQR) studies on superconducting oxypnictide LaFeAsO$_{0.92}$F$_{0.08}$ ($T_{rm c}$ = 23 K). The temperature dependence of the spin lattice relaxation rate (1/$T_1$) decreases below $T_{rm c}$ without a coherence (Hebel-Slichter) peak and shows a temperature dependence that is not simple power-law nor exponential. We show that the result can be understood in terms of two superconducting gaps of either $d$- or ${pm}s$-wave symmetry, with the larger gap $Delta_1sim 4 k_{rm B}T_{rm c}$ and the smaller one $Delta_2 sim 1.5 k_{rm B}T_{rm c}$. Our result suggests that the multiple-gaps feature is universal in the oxypnictides superconductors, which is probably associated with the multiple electronic bands structure in this new class of materials. We also find that 1/$T_1T$ above $T_{rm c}$ increases with decreasing temperature, which suggests weak magnetic fluctuations in the normal state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا