Do you want to publish a course? Click here

Effect of two loop correction in the formation of QGP droplet

118   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The effect of two loop correction in the formation of quark-gluon plasma (QGP) droplet is studied with the introduction of the two loop correction factor in the mean field potential. Due to the correction factor it shows stability in the droplet formation of QGP indicating at different parametrization factors of the QGP fluid. The correction factor in the potential also shows gluon parameter factor shifts to a larger value from its earlier value of gluon factor of one loop correction in obtaining the stable droplets. The results show decreasing in the observable QGP droplets and droplet sizes are found to be $1.5-2.0$ fm radii with the two loop correction. It indicates that there is parameter like Reynolds number which can control the dynamics of QGP droplet formation and the stability of droplet in the case of droplet formation with the two loop correction factor.



rate research

Read More

Quark-gluon plasma (QGP) droplet formation is re-considered with the addition of three loop correction to the earlier loop factors in the mean field potential. The correction of the three loop factor increases stability in the droplet formations of QGP at different parametrization factors of the QGP fluid and it is in better agreement in comparison to the lattice results of pressure, energy density and other thermodynamic relations. This implies that the contribution of the three loop enhances in showing the characteristic features of the QGP fluid. It shows that increasing the loop increased the strength of parametrization value which we defined earlier as a number parameter of fluid dynamics. It indicates that the model with the loop correction boosts in explaining about the formation of QGP droplet in the expansion of early universe
We construct the density of states for quarks and gluons using the `Thomas - Fermi model for atoms and the `Bethe model for nucleons as templates. With parameters to take care of the plasma (hydrodynamical) features of the QGP with a thermal potential for the interaction, we find a window in the parametric space of the model where observable QGP droplets of $ sim $ 5 fm radius can occur with transition temperature in the range 140 MeV to 250 MeV. By matching with the expectations of Lattice Gauge estimates of the QGP-hadron transitions, we can further narrow the window, thereby restricting the allowed values of the flow-parameters of the model.
The collisional energy gain of a heavy quark due to chromo-electromagnetic field fluctuations in a quark-gluon plasma is investigated. The field fluctuations lead to an energy gain of the quark for all temperatures and velocities. The net effect is a reduction of the collisional energy loss by 15-40% for parameters relevant at RHIC energies.
Fluidity of quark-gluon plasma (QGP) is studied where interaction between quark and gluon is mapped through fugacity in particle distribution function using lattice quantum chromodynamics (LQCD) results.
A Comparative study of the strengths and weakness of the models of fireball formation namely the statistical model of Ramanathan et.al (Physical Review C 70, 027903, 2004) and the approximation schemes of Kapusta et. al (Physical Review D 46, 1379, 1992) and its subsequent improved variants is made. The way to complement the various approximation schemes, in order to enhance their utility in the phenomenological analysis of QGP data that are expected from ongoing URHIC experiments, is suggested. The calculations demonstrate a striking QCD behaviour of the surface tension of the QGP droplet resulting in its increase with temperature, which is due to the confining nature of QCD forces at the surface and the interface surface tension varies as the cube of the transition temperature which is in conformity with the results of Lattice QCD simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا