The HAWC Gamma-Ray Observatory has reported the discovery of TeV gamma-ray emission extending several degrees around the positions of Geminga and B0656+14 pulsars. Assuming these gamma rays are produced by inverse Compton scattering off low-energy photons in electron halos around the pulsars, we determine the diffusion of electrons and positrons in the local interstellar medium. We will present the morphological and spectral studies of these two VHE gamma-ray sources and the derived positron spectrum at Earth.
The discovery of extended TeV emission around the Geminga and PSR B0656+14 pulsars, with properties consistent with free particle propagation in the interstellar medium (ISM), has sparked considerable discussion on the possible presence of such halos in other systems. Here we make an assessment of the current TeV source population associated with energetic pulsars, in terms of size and estimated energy density. Based on two alternative estimators we conclude that a large majority of the known TeV sources have emission originating in the zone energetically and dynamically dominated by the pulsar (i.e. the pulsar wind nebula), rather than from a halo of particles diffusing in to the ISM. Furthermore, whilst the number of established halos will surely increase in the future, we find that it is unlikely that such halos contribute significantly to the total TeV $gamma$-ray luminosity from electrons accelerated in PWN.
In the past few years, gamma-ray astronomy has entered a golden age thanks to two major breakthroughs: Cherenkov telescopes on the ground and the Large Area Telescope (LAT) onboard the Fermi satellite. The sample of supernova remnants (SNRs) detected at gamma-ray energies is now much larger: it goes from evolved supernova remnants interacting with molecular clouds up to young shell-type supernova remnants and historical supernova remnants. Studies of SNRs are of great interest, as these analyses are directly linked to the long standing issue of the origin of the Galactic cosmic rays. In this context, pulsar wind nebulae (PWNe) need also to be considered since they evolve in conjunction with SNRs. As a result, they frequently complicate interpretation of the gamma-ray emission seen from SNRs and they could also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current results and thinking on SNRs and PWNe and their connection to cosmic ray production.
The majority of Galactic TeV gamma-ray sources are pulsar wind nebulae (PWNe) and supernova remnants (SNRs), and the most common association for unidentified sources is PWN. Many of these sources were discovered in TeV by imaging air Cherenkov telescopes using overlapping pointed observations over sections of the Galactic plane. The HAWC observatory is a survey type instrument in the Northern hemisphere with an energy range of 100 GeV to 100 TeV. Preliminary analysis of data recorded with the partially completed HAWC array taken since 2013 shows extended detections that are coincident with known TeV SNRs and PWNe. The full array became operational in early 2015 and has been steadily surveying the Northern sky since. I will discuss detections in HAWC data taken since 2013 associated with PWNe and SNRs.
We report recent progress on the on-going NuSTAR observational campaign of 8 TeV-detected pulsar wind nebulae (PWNe). This campaign constitutes a major part of our NuSTAR study of some of the most energetic TeV sources in our Galaxy detected by VERITAS and HAWC. NuSTAR is the first focusing X-ray telescope operating above 10 keV in space with sub-arcminute angular resolution. Broad-band X-ray imaging and spectroscopy data, obtained by NuSTAR, allow us to probe sub-PeV electron populations through detecting synchrotron X-ray radiation. Our targets include PeVatron candidates detected by HAWC, the Boomerang nebula, PWNe crushed by supernova remnant shocks (or relic PWNe) and G0.9+0.1 in the Galactic Center. Using Fermi-LAT data and available TeV data, we aim to provide a complete, multi-wavelength view of a diverse class of middle-aged (~10-100 kyrs old) PWNe. Our NuSTAR analysis detected hard X-ray emission from the Eel and Boomerang PWNe and characterized their broad-band X-ray spectra most accurately. We plan to apply both time-evolution and multi-zone PWN models to multi-wavelength spectral energy distribution (SED) data over the radio, X-ray, GeV and TeV bands. In this proceeding, we will review our observational campaign and discuss the preliminary results for some PWNe.
In this paper we explore the evolution of a PWN while the pulsar is spinning down. An MHD approach is used to simulate the evolution of a composite remnant. Particular attention is given to the adiabatic loss rate and evolution of the nebular field strength with time. By normalising a two component particle injection spectrum (which can reproduce the radio and X-ray components) at the pulsar wind termination shock to the time dependent spindown power, and keeping track with losses since pulsar/PWN/SNR birth, we show that the average field strength decreases with time as $t^{-1.3}$, so that the synchrotron flux decreases, whereas the IC gamma-ray flux increases, until most of the spindown power has been dumped into the PWN. Eventually adiabatic and IC losses will also terminate the TeV visibility and then eventually the GeV visibility.
F. Salesa Greus
,S. Casanova
,B. Dingus
.
(2017)
.
"Constraining the Origin of Local Positrons with HAWC TeV Gamma-Ray Observations of Two Nearby Pulsar Wind Nebulae"
.
Francisco Salesa Greus
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا