Do you want to publish a course? Click here

Resonances on regular tree graphs

115   0   0.0 ( 0 )
 Added by Amal Taarabt
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the distribution of the resonances near spectral thresholds of Laplace operators on regular tree graphs with $k$-fold branching, $k geq 1$, perturbed by nonself-adjoint exponentially decaying potentials. We establish results on the absence of resonances which in particular involve absence of discrete spectrum near some sectors of the essential spectrum of the operators.



rate research

Read More

We describe the spectral theory of the adjacency operator of a graph which is isomorphic to homogeneous trees at infinity. Using some combinatorics, we reduce the problem to a scattering problem for a finite rank perturbation of the adjacency operator on an homogeneous tree. We developp this scattering theory using the classical recipes for Schrodinger operators in Euclidian spaces.
326 - Yu. Higuchi , N. Konno , I. Sato 2014
From the viewpoint of quantum walks, the Ihara zeta function of a finite graph can be said to be closely related to its evolution matrix. In this note we introduce another kind of zeta function of a graph, which is closely related to, as to say, the square of the evolution matrix of a quantum walk. Then we give to such a function two types of determinant expressions and derive from it some geometric properties of a finite graph. As an application, we illustrate the distribution of poles of this function comparing with those of the usual Ihara zeta function.
We consider the Dirichlet Laplacian in a straight three dimensional waveguide with non-rotationally invariant cross section, perturbed by a twisting of small amplitude. It is well known that such a perturbation does not create eigenvalues below the essential spectrum. However, around the bottom of the spectrum, we provide a meromorphic extension of the weighted resolvent of the perturbed operator, and show the existence of exactly one resonance near this point. Moreover, we obtain the asymptotic behavior of this resonance as the size of the twisting goes to 0. We also extend the analysis to the upper eigenvalues of the transversal problem, showing that the number of resonances is bounded by the multiplicity of the eigenvalue and obtaining the corresponding asymptotic behavior
81 - Gregory Berkolaiko 2016
We describe some basic tools in the spectral theory of Schrodinger operator on metric graphs (also known as quantum graph) by studying in detail some basic examples. The exposition is kept as elementary and accessible as possible. In the later sections we apply these tools to prove some results on the count of zeros of the eigenfunctions of quantum graphs.
We provide a purely variational proof of the existence of eigenvalues below the bottom of the essential spectrum for the Schrodinger operator with an attractive $delta$-potential supported by a star graph, i.e. by a finite union of rays emanating from the same point. In contrast to the previous works, the construction is valid without any additional assumption on the number or the relative position of the rays. The approach is used to obtain an upper bound for the lowest eigenvalue.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا