Do you want to publish a course? Click here

Computation of the Binding Energies in the Inverse Problem Framework

83   0   0.0 ( 0 )
 Added by Maksym Deliyergiyev
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We formalized the nuclear mass problem in the inverse problem framework. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The inverse problem was formulated for the numericaly generalized the semi-empirical mass formula of Bethe and von Weizs{a}cker. It was solved in step by step way based on the AME2012 nuclear database. The solution of the overdetermined system of nonlinear equations has been obtained with the help of the Aleksandrovs auto-regularization method of Gauss-Newton type for ill-posed problems. In the obtained generalized model the corrections to the binding energy depend on nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers as well on the asymptotic boundaries of their influence. These results help us to evaluate the borders of the nuclear landscape and show their limit. The efficiency of the applied approach was checked by comparing relevant results with the results obtained independently.



rate research

Read More

The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained with a typical uncertainty of 30 microunits. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.
The dependence on the structure functions and Z, N numbers of the nuclear binding energy is investigated within the inverse problem(IP) approach. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The IP was formulated for the numerical generalization of the semi-empirical mass formula of BW. It was solved in step by step way based on the AME2012 nuclear database. The established parametrization describes the measured nuclear masses of 2564 isotopes with a maximum deviation less than 2.6 MeV, starting from the number of protons and number of neutrons equal to 1. The set of parameters ${a_{i}}$, $i=1,dots, {mathcal{N}}_{rm{param}}$ of our fit represent the solution of an overdetermined system of nonlinear equations, which represent equalities between the binding energy $E_{B,j}^{rm{Expt}}(A,Z)$ and its model $E_{B,j}^{rm{Th}}(A,Z,{a_{i}})$, where $j$ is the index of the given isotope. The solution of the overdetermined system of nonlinear equations has been obtained with the help of the Aleksandrovs auto-regularization method of Gauss-Newton(GN) type for ill-posed problems. The efficiency of the above methods was checked by comparing relevant results with the results obtained independently. The explicit form of unknown functions was discovered in a step-by-step way using the modified least $chi^{2}$ procedure, that realized in the algorithms which were developed by Aleksandrov to solve nonlinear systems of equations via the GN method, lets us to choose between two functions with same $chi^{2}$ the better one. In the obtained generalized model the corrections to the binding energy depend on nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers as well on the asymptotic boundaries of their influence.
Sequences of experimental ground-state energies are mapped onto concave patterns cured from convexities due to pairing and/or shell effects. The same patterns, completed by a list of excitation energies, can be used to give numerical estimates of the grand potential $Omega(beta,mu)$ for a mixture of nuclei at low or moderate temperatures $T=beta^{-1}$ and at many chemical potentials $mu.$ The average nucleon number $<{bf A} >(beta,mu)$ then becomes a continuous variable, allowing extrapolations towards nuclear masses closer to drip lines. We study the possible concavity of several thermodynamical functions, such as the free energy and the average energy, as functions of $<{bf A} >.$ Concavity, when present in such functions, allows trivial interpolations and extrapolations providing upper and lower bounds, respectively, to binding energies. Such bounds define an error bar for the prediction of binding energies. An extrapolation scheme for such concave functions is tested. We conclude with numerical estimates of the binding energies of a few nuclei closer to drip lines.
Nuclear mass contains a wealth of nuclear structure information, and has been widely employed to extract the nuclear effective interactions. The known nuclear mass is usually extracted from the experimental atomic mass by subtracting the masses of electrons and adding the binding energy of electrons in the atom. However, the binding energies of electrons are sometimes neglected in extracting the known nuclear masses. The influence of binding energies of electrons on nuclear mass predictions are carefully investigated in this work. If the binding energies of electrons are directly subtracted from the theoretical mass predictions, the rms deviations of nuclear mass predictions with respect to the known data are increased by about $200$ keV for nuclei with $Z, Ngeqslant 8$. Furthermore, by using the Coulomb energies between protons to absorb the binding energies of electrons, their influence on the rms deviations is significantly reduced to only about $10$ keV for nuclei with $Z, Ngeqslant 8$. However, the binding energies of electrons are still important for the heavy nuclei, about $150$ keV for nuclei around $Z=100$ and up to about $500$ keV for nuclei around $Z=120$. Therefore, it is necessary to consider the binding energies of electrons to reliably predict the masses of heavy nuclei at an accuracy of hundreds of keV.
An omega-meson extension of the Skyrme model - without the Skyrme term but including the pion mass - first considered by Adkins and Nappi is studied in detail for baryon numbers 1 to 8. The static problem is reformulated as a constrained energy minimisation problem within a natural geometric framework and studied analytically on compact domains, and numerically on Euclidean space. Using a constrained second-order Newton flow algorithm, classical energy minimisers are constructed for various values of the omega-pion coupling. At high coupling, these Skyrmion solutions are qualitatively similar to the Skyrmions of the standard Skyrme model with massless pions. At sufficiently low coupling, they show similarities with those in the lightly bound Skyrme model: the Skyrmions of low baryon number dissociate into lightly bound clusters of distinct 1-Skyrmions, and the classical binding energies for baryon numbers 2 through 8 have realistic values.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا